The Tulip Project

a partial treatment of formal analogies

László Kálmán

Research Institute for Linguistics, HAS
Theoretical Linguistics Department, HAS/ELTE

kalman.laszlo@nytud.mta.hu

2019

plan

(1) why "tulip"?
(2) why "partial"?
(3) why "treatment"?

history

- ancient use: 'regularity'
- beginning of 19th century: exception to "sound laws"
- e.g., Hungarian sirolm $>$ siralom \sim siralm- \Rightarrow sátor $>$ sátor \sim sátr-
- de Saussure: back to the ancient view, analogy is the force that makes linguistic systems coherent

analogy

example

analogy

example

analogy

example

Lepage (1996)

- transformation son \rightsquigarrow sons
- transformation son $\rightsquigarrow \sin$
- composition of the two: son $\rightsquigarrow \sin s$

motivation

Lepage was the first to offer a formal treatment of analogy, based on string operations (deletion and insertion, just like in the calculation of Levenshtein distances), and he has used it for finding regularities in large corpora.

However, this method is difficult to generalize to more sophisticated representations and operations; I felt that a more principled and abstract way of approaching analogy is called for.
In what follows, I will first show, starting from this simple string example, what analogy means at the most abstract level.

tulip

analogy

tulip

analogy

$A: B=C: ?$	
son	sons
\downarrow	
sin	sins

tulip

analogy

$A: B=C: ?$	
son	sons
\downarrow	
\sin	sins

tulip

analogy

metaphorically

$$
\begin{gathered}
\text { sons } \backslash \text { son }=-s \quad \text { sin } \backslash \text { son }=-i-\quad \text { son } \cap \operatorname{sons} \cap \sin =s^{-}-n \\
?=-s \cup-i-\cup s^{-}-n=\sin s
\end{gathered}
$$

summary

It seems that the "tulip" is a suitable set theoretical metaphor, but how will we make it operational? What should be the members of our sets? They should be something like "ingredients" or "properties" of representations, but this is too general, and the calculi of such entities is often non-trivial.

why partial?

things i cannot do (and maybe do not want to)

- reduplication: tami : tatami = paya: ?
- metathesis: top : pot = lead : ?

things i cannot do (but would like to)

- sub- (auto-) segmental phenomena: teeth : teethe = belief : ?
- semantic phenomena: sleep : slept $=$ go : ?
- true analogy is not based on individual examples, but legions of them, with varying frequencies

why treatment?

elements of a solution

- approach 1: strings represented as sets of binary trees with ordered branches ("left" and "right") with constraints as leaves
- approach 1: strings represented as partial orders over subsets of a set with an equivalence classification (corresponding to features)
- difference, intersection and "union" (combination) are defined accordingly

approach 1: trees

approach 1: trees

difference

approach2: partial orders

brief description

- the universe $\mathcal{U}=\langle\mathcal{E}, \equiv\rangle$ (entities with an equivalence relation $\equiv \subseteq \mathcal{E}^{2}$, representing features)
- string constraints $\langle E, \leq\rangle$, with $E \subseteq \mathcal{E}$, a partial ordering \leq over E
- for a simple string, $x_{1}^{(s)} \leq x_{2}^{(o)} \leq x_{3}^{(n)} \leq x_{4}^{(s)}$

the tricky part: operations

- they are defined over sets of constraints
- maps from "sons" to "son" and from "sin" to "son"
- difference: unmapped part; intersection: covered by both ranges
- linearization also yields sets of strings
- modelling sub- and autosegmental representations (partial order of timing points that start or end an autosegment)

Köszönöm a figyelmet!

references

Lepage, Yves and Shin-ichi, Ando, 1996. "Saussurian analogy: a theoretical account and its application". Proc. COLING '96, Vol. 2, pp. 717-722. ACL, Stroudsburg PA.

