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Peter runs.

(i) run(p)

(ii) ∃e(run ′(e, p))

(iii) ∃e(run ′(e, p)∧ Rexist(e))

Tom belives that John walks to the pub and Kate runs to the shop.

(iv) ∃e1, e2, e3, e4, t, j, k, p, s(tom(t)∧ believe ′(e1, t, e2)∧

Present(e1)∧ Rexist(e1)∧ And ′(e2, e3, e4)∧ john(j)∧

walk ′(e3, j)∧ Present(e3)∧ To(e3, p)∧ pub(p)∧ kate(k)∧

run ′(e4, k)∧ Present(e4)∧ To(e4, s)∧ shop(s))
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■ Standard first-order representation

■ All morphemes correspond to predications

■ The logical form is an instance of the schema

∃ǫ1, ..., ǫn(Π1(η
1
1, ..., η

1
i1
)∧ ...∧ Πm(η

m
1 , ..., η

m
im
))

Motivation

■ Closeness to English (for easy translation)

■ Syntactical simplicity

■ To treat everything that can be referred to anaphorically as first-class

individuals
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Axiom schema of plenitude:

∀x1, . . . , xn∃e Π
′(e, x1, . . . , xn)

Axiom schema of real existence:

∀x1, . . . , xn(Π(x1, . . . , xn) ↔ ∃e(Rexist(e)∧ Π ′(e, x1, . . . , xn)))

Nonstandard elements in the ontology

■ Eventualities (even conjunctive, universal etc.)

■ Merely possible entities

■ Fictional entities

■ Sets/classes and their typical elements

■ Concepts
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“Interpretation is the minimal explanation Jon the basis of mutual

knowledgeK of why the text would be true.

. . . . . . . . . . . . . . . . . . . . . . . .

To interpret a sentence:

Prove the logical form of the sentence,

together with constraints that predicates impose on their

arguments,

allowing for coercion,

Merging redundancies where possible,

Making assumptions where necessary.”

(Hobbs et al., “Interpretation as abduction”, 1993)
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I bought a car. The vehicle is perfect.

I bought a car.

Logical form:

∃x, e, c(Ego(x)∧ buy ′(e, x, c)∧ Past(e)∧ car(c))

Assumptions:

Ego(I1), buy ′(E1, I1, I2),Past(E1), car(I2)

The vehicle is perfect.

Logical form:

∃e, c(Present(e)∧ perfect ′(e, c)∧ vehicle(c))

From the background knowledge base:

∀x(car(x) → vehicle(x))

Assumptions:

Present(E2), perfect ′(E2, I2)



Weighted abduction

Ontological
promiscuity

Interpretation as
abduction

Modelling reasoning

The paradox

Predication trees

The collapse
Reconstructing the
reasoning

Conclusion

7 / 33

■ Assumptions should be checked for consistency

■ Conjuncts in the logical form are given assumability costs, e.g.:

∃e, x(flies ′(e, x)$10 ∧ animal(x)$20)

■ Axioms are weighted, e.g.:

∀x(bird(x)0.8 ∧ etc1(x)
0.3

→ flies(x))

Assuming etc1(I1) to deduce fly(I1)
$10 would cost 0.3× $10 = $3.

■ Factoring/synthesis: If an assumption costs

∃ . . . x, . . . y, . . . (. . .P(x)$20 ∧ . . .P(y)$10 . . . ),

then a “synthesis” of x and y leads to lower cost:

∃ . . . x, . . . (. . .P(x)$10 ∧ . . . )
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■ Abductive syntax: The Syn(t, e, . . . ) predicate expresses that the t

text conveys eventuality e. Interpreting a sentence s requires proving

∃e Syn(s, e, . . . ).

■ Abductive discourse interpretation: the coherence of the discourse

also has to be proved using axioms like

∀w1, w2, e1, e2, e(Segment(w1, e1)∧ Segment(w2, e2)∧

CoherenceRel(e1, e2, e) → Segment(w1w2, e))

■ Formalisation of core common sense theories.

■ Integration of lexical resources with wider coverage: Wordnet etc.

■ Probabilistic semantics for weighted abduction (to facilitate automatic

learning of weights).

■ Account for the brain’s implementation of the abductive interpretation

mechanism.
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Modus ponens

Agents know and use modus ponens:

∀a, p, q, i(Believe(a, p)∧Believe(a, i)∧Imply ′(i, p, q) → Believe(a, q))

General beliefs

Agents can also have genuine general beliefs. E.g. Peter’s believing that

whales are fishes can be formalised as

Believe(P, I)∧ Imply ′(I,W, F)∧ Whale ′(W,V)∧ Fish ′(F, V)∧ Iv(V)

where V is an inner variable, subject to the axiom of universal instantiation

(UI)

∀p, v, y(Rexist(p)∧ Iv(v) → ∃q(Subst(v, p, y, q)∧ Rexist(q)))
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(S1) ∀a, b, e1, e2, . . . , ui, . . . (Subst(a, e1, b, e2)∧

Π ′(e1, . . . , ui, . . .) → ∃ . . . , wi, . . . (Π
′(e2, . . . , wi, . . .)∧

. . .Subst(a, ui, b,wi)∧ . . .))

(S2) ∀a, b, e1, e2, . . . , ui, wi . . . (Subst(a, e1, b, e2)∧

Π ′(e1, . . . , ui, . . .) → (Π ′(e2, . . . , wi, . . .) ↔

. . .Subst(a, ui, b,wi)∧ . . .))

(S3) ∀a, b, e1, . . . , ui, wi, . . . (. . .Subst(a, ui, b,wi)∧

. . . Π ′(e1, . . . , ui, . . .) →

∃e2(Π
′(e2, . . . , wi, . . .)∧ Subst(a, e1, b, e2)))

(S4) ∀a, b, e1, e2, . . . , ui, wi, . . . (. . .Subst(a, ui, b,wi)∧

. . . Π ′(e1, . . . , ui, . . .) → (Π ′(e2, . . . , wi, . . .) ↔

Subst(a, e1, b, e2)))
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(S5) ∀a∀b Subst(a, a, b, b)

(S6) ∀a∀b∀c(¬Eventualiy(c)∧ c 6= a → Subst(a, c, b, c))

A universal instantiation example
John believes that everything is material, therefore John believes that Peter

is material.

(i) Believe ′(e, J, u)∧ Rexist(e)∧ Material ′(u, v)∧ Iv(v)

(ii) by (UI), ∃e ′ : Subst(v, e, P, e ′)∧ Rexist(e ′)

(iii) by (S5) and (S6), Subst(v, v, P, P)∧ Subst(v, J, P, J)

(iv) by (S3), ∃u ′ : Subst(v, u, P, u ′)∧ Material ′(u ′, P)

(v) by (S2), Believe ′(e ′, J, u)
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Conjunction

∀e1, e2(And(e1, e2) ↔ Rexist(e1)∧ Rexist(e2))

Implication

∀e1, e2(Imply(e1, e2) ↔ (Rexist(e1) → Rexist(e2)))

Negation

∀e(Not(e) ↔ ¬Rexist(e))

Negation is intended to be weak : From

Π ′(e, x1, . . . , xn)∧ Not(e)

it should not follow that ¬Π(x1, . . . , xn), because Not denies only the real

existence of a particular eventuality. On the other hand, instances of the

following schema hold:

∀x1, . . . , xn(¬Π(x1, . . . , xn) ↔ ∀e(Π ′(e, x1, . . . , xn) → Not(e)))
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An L language is semantically closed if

(i) every sentence S of L has a name "S" in L

(ii) the language contains a T truth-predicate, for which all instances of

the T-schema

S ↔ T("S")

are true.

If, in addition, a premise equivalent to

(iii) S ↔ ¬True("S")

can be established, then L is inconsistent.

Tarski’s footnote hint: (iii) can be based on the Heterological Paradox.
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“A predicate expression is heterological if and only if it doesn’t apply to

itself, autological, if it does. For example, ‘is monosyllabic’, ‘is a French

phrase’ [...] are heterological since they don’t apply to themselves,

whereas ‘is polysyllabic’, ‘is an English phrase’ [...] are autological. Is ‘is

heterological’ heterological? If it is heterological, it doesn’t apply to itself,

and so it is not. If it is not, it does apply to itself, and so is heterological. In

other words, it is if and only if it isn’t.”

(Michael Clark, Paradoxes from A–Z, 2002)

A variant with substitution: If h is the name of the predicate

Substituting the free variable in x with the name of x results in a

sentence which is not true.

Then the following satisfies Tarski’s (iii), and paradoxical:

Substituting the free variable in h with the name of h results in a

sentence which is not true.
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Predicates will be modelled by eventualities, and the role of the free

variable will be played by an individual that is neither an inner variable nor

an eventuality. Accordingly, we assume that

∃x(¬Eventuality(x)∧ ¬Iv(x)) (X)

We also assume the existence of four inner variables:

∃v1, . . . , v4(Iv(v1)∧ . . . Iv(v4)∧ v1 6= v2 ∧ . . .∧ v3 6= v4) (IV)

Finally, singletons will be used as “names” of objects, and we suppose (at

least for the moment) that everything has a singleton:

∀i∃!j∀k(ElementOf(k, j) ↔ k = i) (S)
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Assuming (X), (IV) and (S) it is provable from the axioms we have

encountered so far that there exist an x0 which is the singleton of x and

h, h1, . . . , h6 for which the following conditions hold:

Imply’ h

Not’ h2

v3

And’ h1

Subst’ h4

v3xv1v2

And’ h3

ElementOf’ h6

x0v2

ElementOf’ h5

xv1

h “says” that any eventuality that is the result of substituting its argument in

the “predicate” which it “refers to” (i.e. its element) is not really existing.
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By our assumption regarding the existence of singletons, there will be a h0

for which h0 = {h}, and there will also be a g satisfying the conditions

Imply’ g

Not’ g2

v3

And’ g1

Subst’ g4

v3h0v1v2

And’ g3

ElementOf’ g6

x0v2

ElementOf’ g5

h0v1

Here g corresponds to the paradoxical “ ‘heterological’ is heterological”

statement.
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The relationship between h and g, namely

Subst(x, h, h0, g)

can be proved using the reasonable assumption that inner variables and

sets (singletons) are not eventualities:

∀y(Iv(y)∨ Set(y) → ¬Eventuality(y)) (E)

In that case, (S5) and (S6) guarantees that Subst(x, l, h0, l
′) holds for all

corresponding l, l ′ entities at the same leaves, and the bottom-up (S4)

ensures that this relationship is inherited by all nodes of the tree, up to h

and g at the root.
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Definition 1 A predication tree is an ordered triple T = 〈t, f, g〉 where t is

an ordered rooted tree with more than one nodes, f is a function mapping

all non-leaf nodes of t to a primed predicate, and g is a function which

maps each node of t to a term (individual constant or individual variable).

Definition 2 If T = 〈t, f, g〉 is a predication tree, and n is one of the

non-leaf nodes of t, then F(n), the formula belonging to n, is the atomic

formula whose predicate is f(n), and its self argument is g(n), while its

further arguments are the terms to which g maps the children of n (in the

order corresponding to the ordering of the nodes).
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Definition 3 If T = 〈t, f, g〉 is a predication tree, then F(T), the formula

belonging to T , is the conjunction of all atomic formulas that belong to the

non-leaf nodes of t (in the order corresponding to the ordering of the

nodes).

Definition 4 If T = 〈t, f, g〉 is a predication tree, then C(T), the

completeness formula of T , is the conjunction containing, for each l leaf of

t, a conjunct of the form

p¬Eventuality(τ)q

where τ = g(l), and the order of the conjuncts follows the ordering of the

leafs.
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For instance, if T is the predication tree

And’ e

Hates’ e2

JohnSusan

Loves’ e1

MaryTom

then F(T) is the formula

And ′(e, e1, e2)∧ Loves ′(e1, Tom,Mary)∧ Hates ′(e2,Susan, John)

while C(T) is the formula

¬Eventuality(Tom)∧ ¬Eventuality(Mary)∧ ¬Eventuality(Susan)∧

¬Eventuality(John)
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Proposition 1 If T1 = 〈t, f, g1〉, T2 = 〈t, f, g2〉 are predication trees, the

root of t is r, α and β are terms and ϕl is a conjunction containing for

each l leaf of t a conjunct

pSubst(α, g1(l), β, g2(l))q

while ϕt is a conjunction containing for each n node of t a conjunct

pSubst(α, g1(n), β, g2(n))q

then the following formulas are provable from the substitution axioms:

(a) pF(T1)∧ F(T2)∧ Subst(α, g1(r), β, g2(r)) → ϕtq

(b) pF(T1)∧ F(T2)∧ϕl → ϕtq

(c) pF(T1)∧ F(T2) → (Subst(α, g1(r), β, g2(r)) ↔ ϕl)q
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Proposition 2 If T1 = 〈t, f, g1〉 is a predication tree and the nodes of t

are n0, . . . nm with n0 as root, α,β, τ are terms, γ1, . . . , γm are

different variables also different from τ, and T2 = 〈t, f, g2〉 is a predication

tree for which g2(t0) = τ, and g2(ti) = γi for all i ∈ [1, . . . ,m], then it

is provable from the substitution axioms that

pF(T1)∧ Subst(α, g1(n0), β, τ) → ∃γ1, . . . γm(F(T2)∧

Subst(α, g1(n1), β, γ1)∧ . . .∧ Subst(α, g1(nm), β, γm))q

Provable using (S3), by induction on the number of nodes in the tree.
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Surprisingly, eventualities resulting from the same eventualities by the

same substitution have the same atomic properties and relations:

Theorem 1 The following is provable from Hobbs’s axioms for any n-ary

Π predicate: If e1, . . . en, d1, . . . , dn, d
′

1, . . . , d
′

n and a, b are

eventualities for which

Subst(a, e1, b, d1)∧ Subst(a, e1, b, d
′

1)∧ . . .∧ Subst(a, en, b, dn)∧

Subst(a, en, b, d
′

n)

then

Π(d1, . . . , dn) ↔ Π(d ′

1, . . . , d
′

n)
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Proof sketch. If Π(d1, . . . , dn) holds, then it will also hold that

∃e(Rexist(e)∧ Π ′(e, d1, . . . , dn)).

Let f be an eventuality for which

Π ′(f, e1, . . . , en).

On the basis of axiom schema (S4) and our assumptions we can infer that

Subst(a, f, b, e)

holds. From this, applying (S4) again we also get

Π ′(e, d ′

1, . . . , d
′

n)

from which, considering that Rexist(e), it follows that Π(d ′

1, . . . , d
′

2).
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A trivial, but important consequence of the previous theorem:

Subst(a, e, b, d)∧ Subst(a, e, b, d ′) → (Rexist(d) ↔ Rexist(d ′))

It is also provable that isomorphic eventualities, that is, eventualities

involving the same non-eventualities and the same predicate structure also

have the same atomic properties.

Definition 5 If τ1 and τ2 are terms and ϕ is a formula, then ϕ is an

isomorphism formula between τ1 and τ2, if there is a tree t and there are

mappings f, g1, g2 such that both T1 = 〈t, f, g1〉 and T2 = 〈t, f, g2〉 are

predication trees, for every l leaf of t g1(l) = g2(l), g1 maps the root of t

to τ1, g2 maps the root of t to τ2, and ϕ is a conjunction consisting of the

following conjuncts: F(T1), C(T1), F(T2).
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Lemma 1 If τ1 and τ2 are terms, ϕ is an isomorphism formula between

them, then for any term α the following is provable from Hobbs’s axioms:

pϕ → Subst(α, τ1, α, τ2)q

Using that lemma it is provable that isomorphic eventualities have the

same atomic properties:

Theorem 2 If Π is an atomic predicate with arity n, α1, . . . , αn and

β1, . . . , βn are terms, and ϕ1, . . . , ϕn are formulas such that for all

i ∈ [1, n], ϕi is an ismorphism formula between αi and βi, then it is

provable from the axioms that

pϕ1 ∧ . . .∧ϕn → (Π(α1, . . . , αn) ↔ Π(β1, . . . , βn))q
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Applying Theorem 2 to Rexist, we get that if ϕ is an isomorphism formula

between α and β, then

pϕ → (Rexist(α) ↔ Rexist(β))q

is provable from the axioms. This means that the axiom system is not as

Davidsonian as it was intended to be. E.g., from the assumption that

¬Eventuality(John)∧ Runs ′(e1, John)∧ ¬Rexist(e1) it is provable that

∀e(Runs ′(e, John) → ¬Rexist(e))

from which it follows that ¬Runs(John), i.e. denying a particular condition

of John’s running, we deny all such conditions.

Perhaps even more dramatically, if the predicate Past applies to one

eventuality of John’s running, then it applies to all such eventualities.
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To prove that

Rexist(g) → ¬Rexist(g)

we assume that

∀y(Iv(y) → ¬Set(y)) and ∀y(Iv(y)∨ Set(y) → ¬Eventuality(y))

and observe that the already proved

Subst(a, e, b, d)∧ Subst(a, e, b, d ′) → (Rexist(d) ↔ Rexist(d ′))

can be used to strengthen (UI) to the form

∀v, y, p(Rexist(p)∧ Iv(v) →

(∃q.Subst(v, p, y, q)∧ ∀r(Subst(v, p, y, r) → Rexist(r))))

and on the basis of this variant of (UI), we can perform a series of “Rexist

preserving” substitutions in g, replacing v1 with h, v2 with x, and v3 with g

itself.
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For the resulting g∗ both Rexist(g∗) and the formula belonging to the

following tree is provable:

Imply’ g∗

Not’ g∗2

g

And’ g∗1

Subst’ g∗4

gh0hx

And’ g∗3

ElementOf’ g∗6

x0x

ElementOf’ g∗5

h0h

From which it can be computed that Rexist(g∗2) holds, and, therefore,

Not(g) ↔ ¬Rexist(g) must also hold.
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The proof of the other direction:

¬Rexist(g) → Rexist(g)

requires assuming the following (R) reverse version of (UI):

∀v, p(¬Rexist(p)∧ Iv(v) →

∃y, q(¬Iv(y)∧ Subst(v, p, y, q)∧ ¬Rexist(q)))

which states that not “Rexisting” universal eventualities must have

counterexamples.

Assuming (R), we can perform a series of “falsity preserving” substitutions

in g, replacing v1 with h ′, v2 with x ′, and v3 with g ′ to arrive at the result

g◦, for which ¬Rexist(g◦) is provable.
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The formula belonging to the following tree is provable:

Imply’ g◦

Not’ g◦2

g ′

And’ g◦1

Subst’ g◦4

g ′h0h ′x ′

And’ g◦3

ElementOf’ g◦6

x0x ′

ElementOf’ g◦5

h0h ′

A series of indirect arguments shows that Rexist(g◦1), Rexist(g◦3), . . . ,

Rexist(g◦6) and Rexist(g ′) hold. Therefore h ′ = h, x ′ = x, and

Subst(x, h, h0, g
′), from which g and g ′ are isomorphic and therefore

Rexist(g) must hold.
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■ The “collapse of grounded eventualities” is provable from the axioms

about substitution and Rexist.

■ The Rexist(g) → ¬Rexist(g) direction of the paradox requires

assuming the existential (X), (IV), plus that inner variables and sets

are not eventualities, and that no inner variable is a set.

■ The ¬Rexist(g) → Rexist(g) direction also requires the reverse

version of (UI).

■ All assumptions except the reverse of (UI) might still hold in

sufficiently strange models.
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