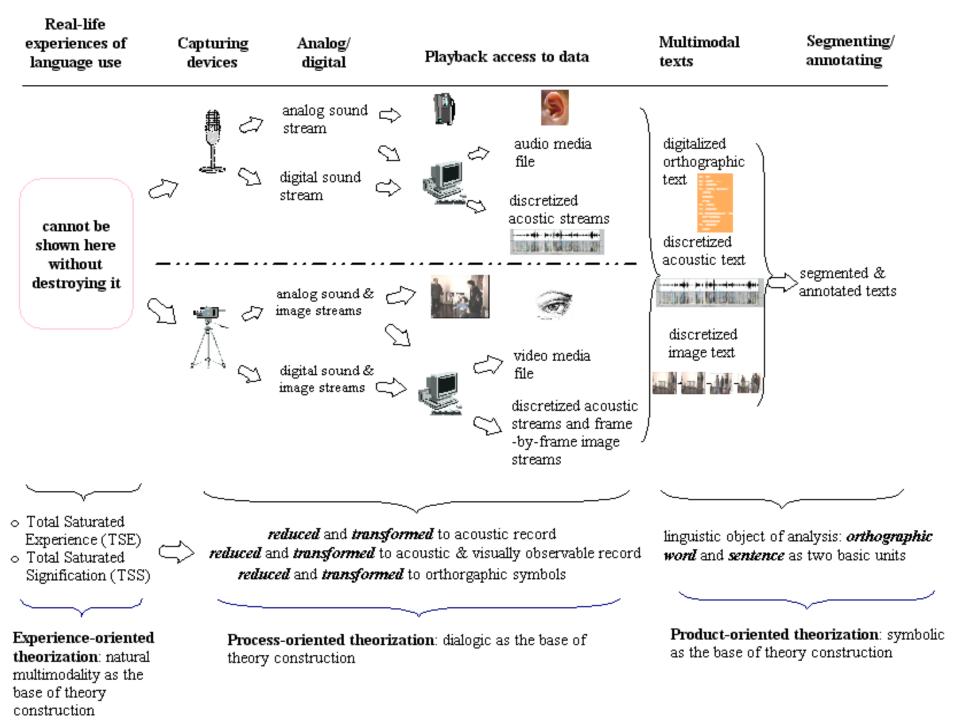
From Conceptual Model to Data Model in Multimedia & Multimodal Corpus Integration

The Institute of Linguistics The Chinese Academy of Social Sciences <u>Yeuguo.gu@gmail.com</u> <u>zhyongwei@qq.com</u>

Main Headings


- What is a multimedia corpus?
- What is a multimodal corpus?
- An introduction to Spoken Chinese Corpus of Situated Discourse (SCCSD for short)
- How to do modeling the real-life activity recorded in multimedia & multimodal corpora
- Two application examples: two research projects which we are undergoing based on SCCSD

What is a multimedia corpus?

- Corpus
 - A collection of writings, conversations, speeches, etc., that people use to study and describe a language
- In view of media, the content of a corpus can be recorded by orthographic texts, audio streams, static images, video streams and other media files.
- A corpus which contains orthographic texts, audio files, static images, video files and other media files can be regarded as a multimedia corpus.

What is a multimodal corpus?

- We communicate not only via verbal language, but also through our use of intonation, gaze, hand gestures, body gestures, and facial expressions. (Gibbon D, Mertins I, Moore R. 2000)
- Each modality is one way of communication between humans.
- Communication between humans uses many modalities.
- A corpus which is annotated by more than one communicate modality can be regarded as a multimodal corpus.
- Real-life experiences of language use is Total Saturated Experience (TSE for short)

An introduction to SCCSD

- Spoken Chinese Corpus of Situated Discourse
 - SCCSD for short
 - Gu Yueguo's group has spent more than 20 years on building SCCSD
 - It was first trialed in 1993
 - It was started from 1998 until today
 - Contains 1,000 hours audio records(WAV format, stored in 1,000 CDs);
 - Contains 1,000 hours video records (MPG format, stored in 1,000 DVDs)
 - More than 18 million words transcription

The architecture of SCCSD

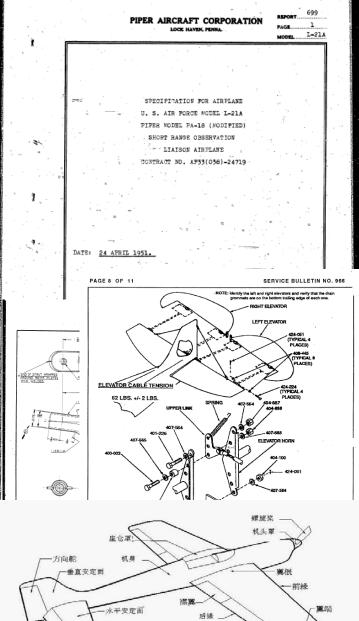
		Major activities of organization	legal and mediatory discourse mass media discourse discourse of medicine and health discourse of sports political discourse public service discourse public welfare discourse religious and superstitious discourse
Spoken Chinese Corpus of Situated Discourse	Societal discourse	activities common to organization	administrative discourse banquet discourse discourse of celebration and ceremony discourse of entertainment and leisure office discourse political study discourse telephone discourse pathological discourse criminal discourse military discourse Miscellaneous
	familial discourse	family discourse in a metropolis	family of high-ranking officials family of entrepreneurs family of businessmen Family of academics Family of white collar Family of blue collar Family of suburb farmers Family of immigrant labour

discourse of government, Parties and social organizations

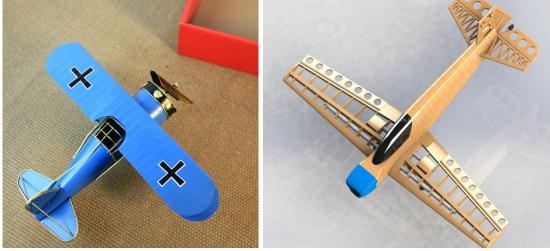
educational and academic discourse

business discourse

Research Methodology


- In View of Multimodal corpus Research, we use simulative modeling as our research methodology
- Two Questions:
 - What is a model?
 - What is Simulative modeling?

What is a model?


- Model
 - Productive model
 - The object doesn't exist;
 - From a concept to a product;
 - What it should be;
 - What function should it has;
 - Simulative model
 - There exists an object;
 - We want to talk about it;
 - We want to understand it;
 - We want to handle it;

What is a model?

- What's the difference between the productive model and the simulative model?
 - The productive model: to model an object that does not exist at the time of modeling;
 - The simulative model: to model an object or phenomenon that exists already at the time of modeling

Productive model

副夷

升降舵

Simulative model

In our research project

- we are concerned with simulative modeling;
- the object or phenomenon already exists.
- Take, for example, Alzheimer's disease patients' discourse.
- If it is the phenomenon we want to study by way of analyzing it, we should use simulative modeling as our research methodology.

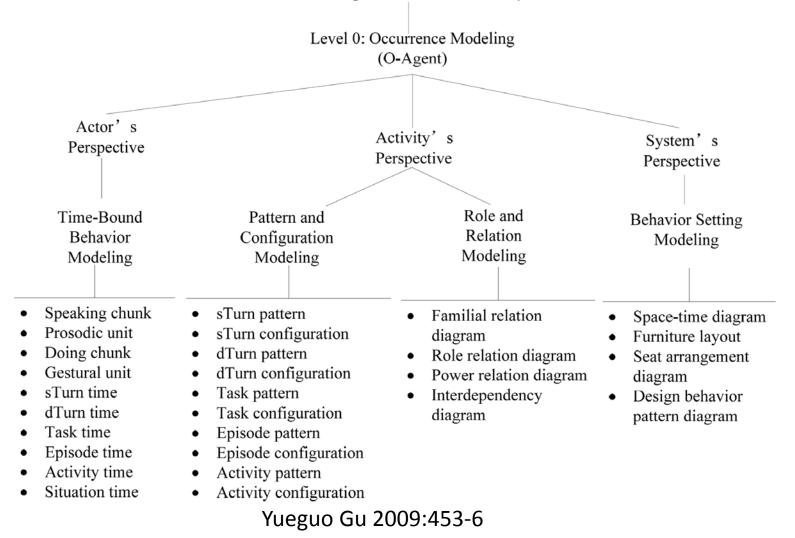
Simulative modeling

- Three steps:
 - conceptual modeling
 - data modeling
 - Implementation and verification

Conceptual modeling

- Basic Principle: Multiple-perspective
- It is impossible to describe the whole activity at one time.
- Each perspective represents a particular view of the activity what we are concerned at one time.
- Multiple-perspective may simulate the whole view of the real-life activity

Multiple-perspective


There is statue standing on a stone.

The linguistic behavior is modeled from a range of perspectives

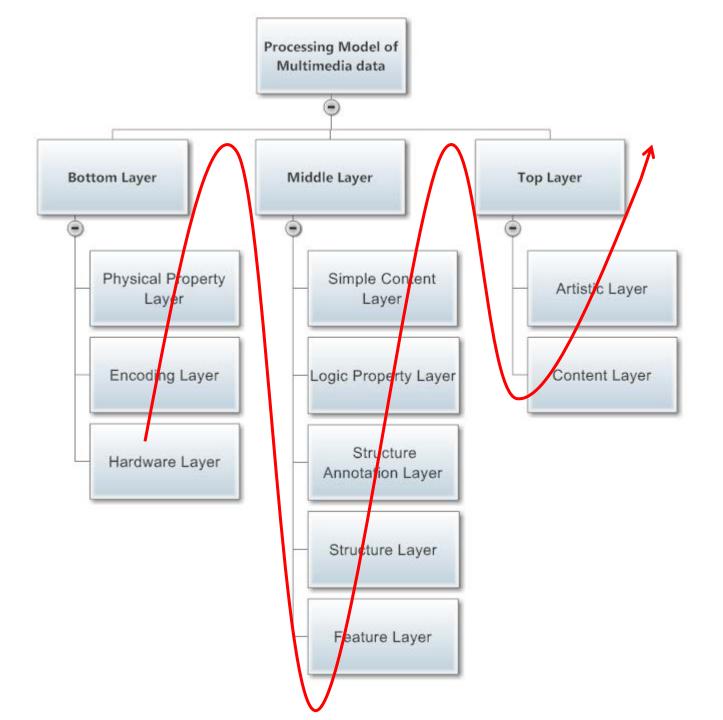
The conceptual model of real-life social activity

Modeling a real-life social activity

Data modeling

- What does Data modeling do?
 - Build the data model according to conceptual model.
 - Convert the understanding of the phenomenon (Conceptual model of real-life activity) to data which can be stored in computer and can be used to retrieval and do statistics.
- Basic Principle: Multiple-layer (According to Multiple-perspective)
 - The relationship of perspectives and layers is not only one-to-one mapping, but also one to multi mapping.

Processing model of multimedia corpus


- Use a hierarchical processing model to process multimedia files.
- Generally, the processing model of multimedia corpus can be divided into the bottom layer, middle layer and top layer.
- Among the three layers, the bottom layer is closely related to the computer hardware, so the computer processing is relatively easy.
- The top layer is closely related to the advanced semantics and artistic appreciation, and the computer processing is the most difficult in this part.

Processing model of multimedia corpus

- The middle layer consists of many sub-layers; from the bottom up, the difficulties of conducting the computer processing to each sub-layer increase in sequence, and more and more manual interventions are needed when conducting the corpus segmentation and annotation.
- Different medias have different processing models which can instruct the procedure of processing multimedia data

Take Static Image as An Example

- The bottom layer of the processing model contains hardware layer, encoding layer and physical property layer.
- The middle layer of the processing model contains feature layer, structure layer, structure annotation layer, logic property layer and simple content layer.
- The top layer of the processing model contains content layer and artistic layer.

Hardware Layer & Encoding Layer

- Hardware layer and encoding layer concern
 - how hardware devices capture the multimedia data
 - how to store the multimedia data
 - How to show the multimedia data
- We don't concern much about hardware layer and encoding layer

Physical Property Layer

- Describe properties of the media files which are generated by the media file capture devices. (Camera, recorder etc.)
- Take documentary photography (static image) as an example
 - Camera write date and time information, manufacturer information, exposure time, ISO speed information to static image
 - Exif is an standard to record these data, and almost all camera manufacturers use it. (Besides Exif standard, there are also other related standards: XMP、IPTC、JFIF、TIFF)
 - Computer can view and edit these data easily.

Drag files and/or folders into the list below.

V Bit depth Horizontal reso 🗸 Width Vertical resolut Height Folder name 🔲 Folder path 🔲 Path 🚺 Туре Link status EXIF version Exposure bias Exposure time F-stop Flash mode Focal length **V** ISO speed Max aperture Metering mod Orientation White balance 📃 Length Bit rate Protected Media created

esolution	*	ne	Bit depth	Width	Horizontal resolution	Height	Туре	EXIF version	White balance	Orientation	Max aperture	ISO speed	Focal length	
solution		191.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	2.96875	ISO-800	8 毫米	
lution		192.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	2.96875	ISO-500	8 毫米	
		193.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	5.0625	ISO-800	28 毫米	Ξ
		194.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	5.0625	ISO-800	28 毫米	
		195.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
		196.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	5.0625	ISO-800	28 毫米	
		197.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
		198.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-250	14 毫米	
IS		199.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
ne		200.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
		201.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-800	16 毫米	
		202.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
		203.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
e.	-	204.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.65625	ISO-800	23 毫米	
ode		207.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-800	16 毫米	
ce		208.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-800	16 毫米	
		209.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-800	16 毫米	
		210.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4.34375	ISO-800	20 毫米	
		211.JPG	24	4000 像素	180 dpi	3000 像素	JPEG 图像	0220	自动	正常	4	ISO-800	14 毫米	*
be	Ŧ	4												

Feature Layer

- Extract features from the multimedia files
- Written texts: Term Frequency (TF), Document Frequency (DF), TFIDF=TF/DF, etc.
- Static Images: Color, Texture, Shape, Scale-Invariant Feature Transform(SIFT), etc.
- Audio streams: Waveform, Power, Spectrum Envelope, Linear Predictive Cepstral Coefficient(LPCC), Mel Frequency Cepstral Coefficients(MFCC), etc.
- Video streams: Color, Texture, Shape, Motion, etc.
- Computer can extract most of the features from multimedia files

Structure Layer

- Describe the structure of the media file.
- Segmentation is the basic operation.
- Written texts: paragraphs, sentences, phrases, words, characters.
- Audio streams: phonemes, syllables, discourse units, turns and other meaningful segments of audio streams.

Structure Layer

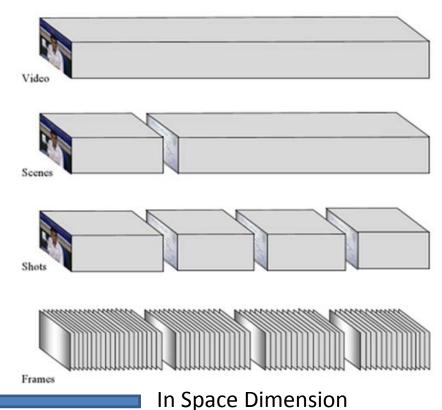
• Static Images:

Original Image

Circular, rectangular ellipse, and polygon.

Segment the Image According to the Boundry of The Object In the Image

the purpose and degree of granularity



Segment the Image using Specific Graph

Video Streams:

In Time Dimension

Video streams can also be segmented in time and space dimension simultaneously.

Structure Annotation Layer

- Structure annotation layer contains annotations of the segmentation
- A = At|As|Ats|An
- At = <start,end,Avalue>
- An = <key,Avalue>
- As = <space_description,Avalue>
- Ats = <start,end, space_description, Avalue>
- Avalue = Avalue,

Avalue | free_text | structured_text | keyword_text | dependency_text | enum_text

A: Annotation	<pre>free_text: Annotation in free text format</pre>				
At: Annotation with time description	structured_text : Annotation in structured text format				
As: Annotation with space description					
Ats: Annotation with time and space description	<pre>keyword_text: Annotaion in keyword text format dependency_text : Annotation in dependeny text format enum_text: Annotation value can be</pre>				
An : Annotation without time or space description					
start : The start media time of the segment					
end: The end media time of the segment					
Avalue: Annotation value					
space_description: Space Description	choosed in a set				
Space_acsemption. Space Description	l: or				

Annotations can be categorized into tiers.

```
T = Tt|Ts|Tts|Tn
Tt = <{At},type,{An}>
Ts= <{As},type,{An}>
Tts = <{Ats},type,{An}>
Tn= <{An},type>
```

T: Tier, Layer

Tt: Tier with time description
Ts: Tier with space description
Tts: Tier with time description and space description
Tn: Tier without time or space description
At: Annotation with time description
As: Annotation with space description
Ats: Annotation with time and space description
An: Annotation without time or space description
An: Annotation without time or space description
The space description
An: Annotation with time and space description
The space description
<lin

R=<{T},{An}>

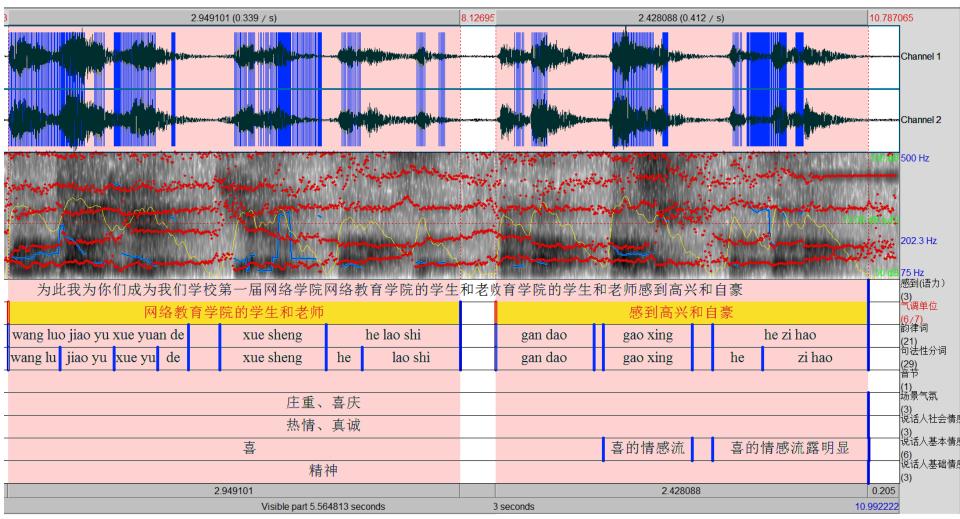
R: The integration result

Logic Property Layer

- Describe properties of the media file which are **not** generated by the media file capture devices. (Camera, recorder etc.)
- For example:
 - Who generate the media file
 - The copyright of the media file
 - The usage information of the media file etc.

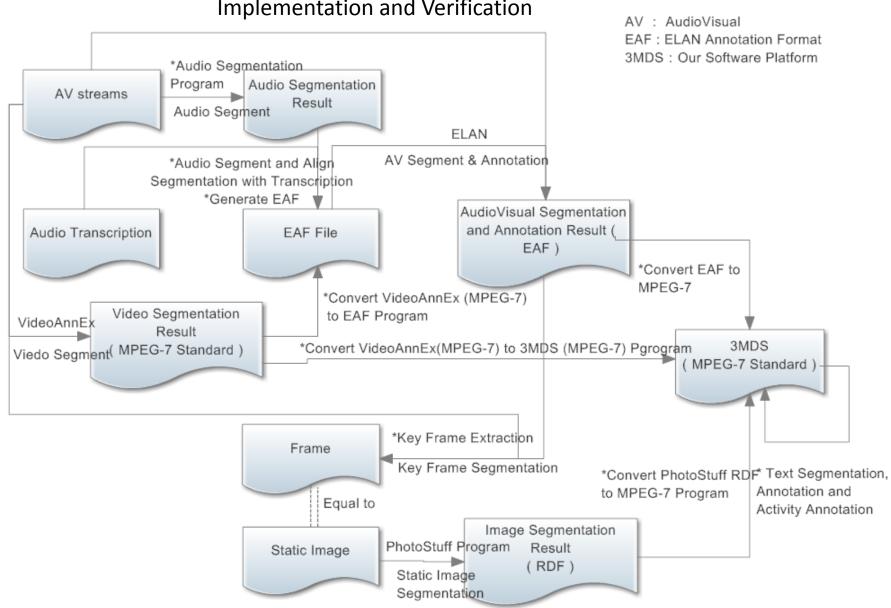
Simple Content Layer & Content Layer

- We separate content layer into a simple one and a normal one.
- In simple content layer, we usually describe the content of the media through WHO, WHAT, WHERE, WHEN, WHY and HOW.
- If there are more information need to describe, we describe them in (normal) content layer.
- Both simple content layer and content layer need human work to annotate.


Artistic Layer

- Artistic layer describes the deeper understanding of the media.
- Different people may have different understandings of the media.
- So, it is unpractical to let computer to describe this layer.

Synchronization & Integration


- There are several software using different metalanguage to synchronize and integrate different kinds of multimedia files: ELAN, Anvil, C-BAS, EXMARaLDA Editor, MacVisSTa, Transformer, Theme, etc.
- We use MPEG-7 as meta-language to describe different layers' content.
- MPEG-7, formally known as Multimedia Content Description Interface which is an international standard

Multi-layered segmentation and annotation

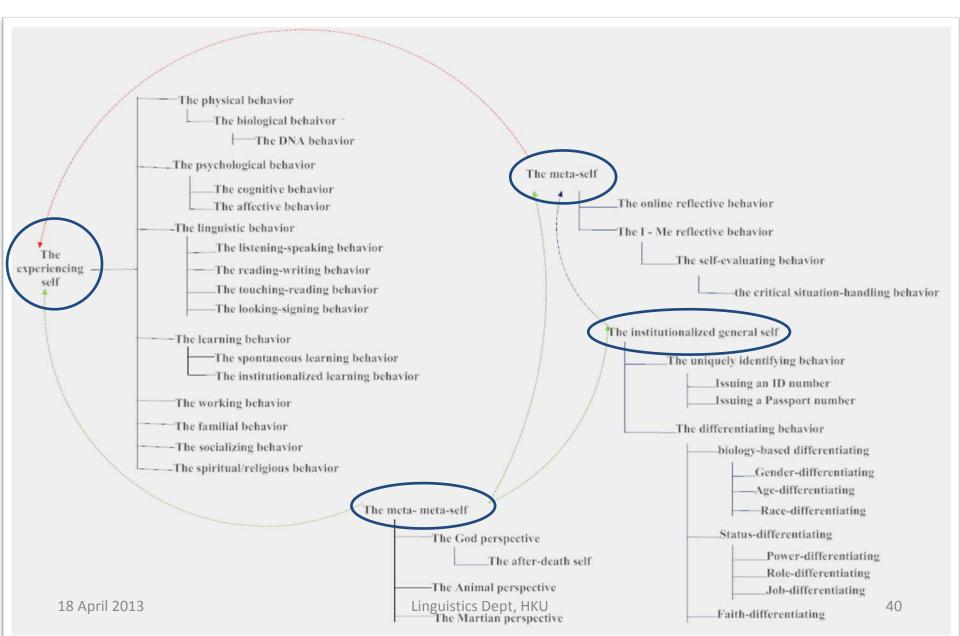
Simulative modeling

- Three steps:
 - conceptual modeling
 - data modeling
 - Implementation and verification

Implementation and Verification

Implementation and Verification

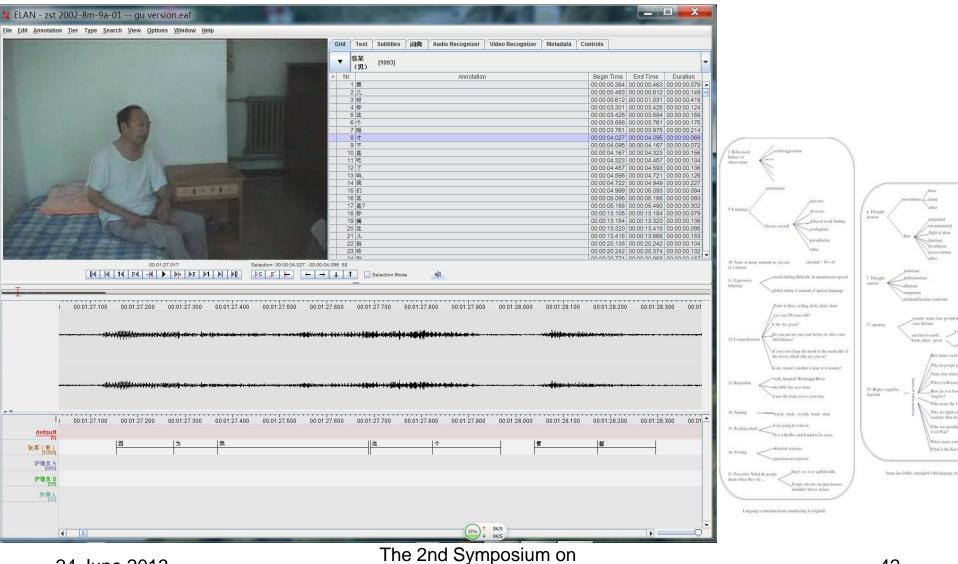
Application Example (1)


- We have s
 Analysis L
 Polytechn
- The under difference
 patients' of discourse

Conceptual modeling

- Modeling your understanding of the phenomenon;
- Understanding: Dementia affects every aspects of a person's life;
- Gu's (2013) model of human agency

The whole man is modeled with a set of behaviors



Self-identity lost

This video was captured by a student of professor Gu Yueguo

A tier each for all perspectives, and parameters

24 June 2013

Contrasted parameters

Normal ageing

Alzheimer's disease

- Verbal behavior (audio + video)
 - a) Articulation
 - b) Fluency
 - c) Pragmatics
 - d) Discourse coherence
- Paralinguistic behavior (video)
 - a) Hand gestures
- Doing-behavior (video)
 - a) Orientation
 - b) Self-caring
 - c) Household chores
- Emotional state (audio + video)

The 2nd Symposium on Healthcare Communication,HKPU GuYueguo

Our hope to contribute

- 1. Mental state examination is clinically handled through interviews;
- 2. Information for many parameters depends on the clinician's intuitive judgments made on the spot, and under the time pressure;
- 3. We use audio-, video-taped data and can look at the data, assisted by the toosl such as Praat and Elan, in the way as physicians look at their data through microscopes.

Ultimate Goal

- Train robots fixed with audio and video sensors to do automatic analysis of audio, and video streams;
- The automated analyzed data helps the clinician make better informed diagnosis.

Application Example (2)

- Intuitively
 - -What is said (言)
 - is connected with
 - -what is thought of (思)
 - is connected with
 - -what is felt (情)
 - is connected with
 - -What is embodied (貌)

The STFE-Match Assumption

- There is a perfect match between what is said, what is thought of, what is felt, and what is embodied i.e.
- the STFE-Match Assumption;
- The Assumption is generally upheld in child discourse, but subject to flouting and manipulating in adult discourse.

- The Integrity Person is modeled from four perspectives (i.e., STFE) in three phases, conceptual modeling, data modeling and implementation/critical evaluation.
- The data, mainly from audio and video recordings of everyday activities, are segmented and annotated using ELAN.

- We have collected a lot of audio and video recordings of prisoners.
- It will be helpful to judge whether a person is lying or not.
- We think there must be some other fields in which multimedia & multimodal corpus can be used.

Brugman H, Russel A. 2004. Annotating multimedia/multi-modal resources with ELAN: Proceedings of the Fourth International Conference on Language Resources and Evaluation. Citeseer.

- Chang, S. F., Sikora, T., & Purl, A. 2001. Overview of the MPEG-7 standard. Circuits and Systems for Video Technology, IEEE Transactions on, 11(6), 688-695.
- Geoffrey Leech, The State of The Art in Corpus Linguistics, 1991, In Aijmar, K. and Altenberg, B., eds., English Corpus Linguistics: Studies in Honor of Jan Svartvik, London: Longman, 1991.
- Gibbon D, Mertins I, Moore R. 2000. Handbook of Multimodal and Spoken Dialogue Systems: Resources, Terminology, and Product Evaluation. Kluwer Academic Publishers.

- Gibbon D, Moore R, Winski R. 1997. Handbook of standards and resources for spoken language systems. Mouton de Gruyter, Berlin.
- Manjunath B S, Salembier P, Sikora T. 2002. Introduction to MPEG-7: multimedia content description interface. John Wiley & Sons Inc.
- Schmidt, T., Duncan, S., Ehmer, O., Hoyt, J., Kipp, M., Loehr, D. Kipp M. et al. 2009. An Exchange Format for Multimodal Annotations. In Multimodal corpora (pp. 207-221). Springer Berlin Heidelberg.
- Yueguo G. 2006. Multimodal text analysis: A corpus linguistic approach to situated discourse. Text & Talk, 26, 2:127-167.

- Gu, Yueguo. 2006. "Sampling situated discourse for spoken Chinese corpus." Retrieved June 15 (2006):
- Yueguo G. 2009. From real-life situated discourse to video-stream datamining: An argument for agent-oriented modeling for multimodal corpus compilation. International journal of corpus linguistics,14(4):433-466.
- Yueguo G. 2012. A conceptual model for segmenting and annotating a documentary photograph corpus (DPC). In xxx, xxx.
- 顾曰国,2002,北京地区现场即席话语语料库的取样与代表性问题, 见中国社会科学院世界经济研究中心编,《全球化与21世纪——首届 "中法学术论坛"论文集》。北京:社会科学文献出版社。484-490 页。
- 顾曰国,2007,多媒体、多模态学习剖析。《外语电化教学》第2期, 3-12页。
- 顾曰国,2011,当代语言学的波形发展主题三:语言、媒介载体与技术。 《当代语言学》第01期,22-48页。

Thanks to:

- Aijun Li
- Andrea Deme
- Danqing Liu
- Huba Bartos
- Jianhua Hu
- Katalin Mády
- Kenesei István
- Yueguo Gu
- Zhengda Tang
- The Research Institute of Linguistics of the Hungarian Academy of Sciences
- Institute of Linguistics of Chinese Academy of Social Sciences