
The “Jump and Stay” Method
to Discover Proper Verb Centered Constructions in Corpus Lattices

Sass Bálint

Research Institute for Linguistics, Hungarian Academy of Sciences
sass.balint@nytud.mta.hu

What?

How? analysed clauses→ DC→ CL→ “jump and stay” method

Where? https://github.com/sassbalint/double-cube-jump-and-stay

input → output
corpus pVCCs

John reads a book. He takes part in a demo. read + SBJ + OBJ
Mary reads a newspaper. He takes part in a mass. take + SBJ + OBJ + into:account
He took this opinion into account. He takes part in a festival. take + SBJ + OBJ:part + in
He will take that info into account.

Mary newspaperJohn book

SBJ OBJ

read

part

take

in OBJ

festival

demo

mass

4

3

2

1

0

l=

read SBJ:John OBJ:book ⊕ three three-dimensional DCs ⊕-ed in two dimensions

read SBJ:Mary OBJ:newspaper (pVCCs are circled. f > 1 in the gray areas.)

previous work
verb centered construction = VCC
proper VCC = pVCC
theoretical model:
double cubes + corpus lattices

current contribution
effective implementation
a verbal constr. discovery method
the “jump and stay” principle
preliminary eval. on Hungarian data

conclusion
1 corpus lattice – interesting

it refers to the location of pVCCs,
worth to investigate more closely,
using our implementation
2 “jump and stay” – promising

discovers pVCCs in corpus lattices,
can be considered a baseline

1 pVCC
VCC = verb + slots + fillers
slot = PP/NP deps (incl. subject)
proper verb centered construc-
tion (pVCC):

complete = contains
all necessary elements

clean = does not contain
any unnecessary element
• free slots = complements
• fillers = idiomatic

a MWE: take part
a pVCC: take+SBJ+OBJ:part+ in

free slots + filled slots
(complementation + collocation)
are equally important
This concept of completeness
is essential (and unique) here.

– Why are pVCCs important?

pVCCs = different meanings / us-
age patterns of verbs.
Idea: a dictionary should present
exactly the set of pVCCs concern-
ing a verb. We handle all of them
uniformly, in one framework.

2 Initial Model
basic unit: clause

representation of a clause:
double cube (DC)
representation of a corpus:
corpus lattice (CL)
created from DCs containing
the same main verb using a
lattice combination operation (⊕)

→ a CL represents all clauses of
a given verb, and also the distri-
bution of all free and filled slots
occurring beside this verb.

3 “Jump and Stay”
f (v) = corpus frequency of the
VCC represented by vertex v.

Observation: pVCC vertices can
be characterized as...

– going top-down f substantially
increases

– better if located higher

The “jump and stay” principle:

• jump = step to an adjacent
vertex downwards in the CL
if f substantially increases

• stay = step to an adjacent
vertex upwards in the CL if
f remains roughly the same

the “jump and stay” idea is nicely
consistent with the fact that con-
structions have mandatory and
accidental elements.

jump = omit accidental element
stay = add mandatory element
a typical pVCC is an endpoint of
both jumps and stays

stays increase completeness
jumps increase cleanness

The value of f jumps up and then stays the same at certain locations
pointing to pVCCs.

f
+ stayjump

this will be the pVCC

OBJ tell

omit

add

OBJ:number

mandatory

accidental

4 Model Impl.
important: to be able to
effectively step from a
vertex to an adjacent one
solution: store vertices
and edges in hashes

5 Data
format: a specific JSON.
It can be generated from
a shallow parsed input
corpus:
verb + slots + fillers
need to be identified.

data: 28 million analysed
Hungarian clauses,
7% dev + 93% test

6 Algorithm

1. take each vertices of the CL
2. omit some: too long (l > 8),

too rare (f < 3), no out-edge
3. look for a stay:

if f (actual)/f (above) < 1.7
→ this a stay
→ step to the vertex above

4. no stay? look for a jump:
if f (below)/f (actual) > 4
→ this a jump
→ step to the vertex below

5. a new vertex reached?
→ repeat steps 3. and 4.

6. if no stay and no jump can be
found→ stop
if the current VCC is not at the
top of the CL→ it is a pVCC

in step 4: no jump if it would omit
the last filler from a VCC

How does our algorithm work in practice?
#4 f= l=

["FAC", null] 309 1

A stay found, we follow.

["FAC", null, ”NOM”, null] 309 2

A stay found, we follow.

["FAC", ”jó” , "NOM", null] 307 3

A stay found, we follow.

[”ACC”, null , "FAC", "jó", "NOM", null] 300 4

No stay (ratio=5.17 > 1.7), we stop.

No appropriate jump (keeping a filler, 1.02 < 4), we stop.

["ACC", null, "FAC", "jó", "NOM", null] 300 4 pVCC

#22699 f= l=

["ACC", ”költségvetés” , "FAC", "jó", "NOM", null] 4 5

No stay (ratio=2.00 > 1.7), we stop.

An appropriate jump (keeping a filler, 4<) found, we follow.

["ACC", null, "FAC", "jó", "NOM", null] 300 4

No stay (ratio=5.17 > 1.7), we stop.

No appropriate jump (keeping a filler, 1.02 < 4), we stop.

["ACC", null, "FAC", "jó", "NOM", null] 300 4 pVCC

hagy + NOM + ACC + FAC:jó← pVCC
allow + SBJ + OBJ + FAC:good (= approve + SBJ + OBJ)

? Hungarian pVCC f word by word English counterpart

húz 9505 draw/pull
1. 3 ACC 8304 OBJ pull sg
2. 3 ACC:idő 420 OBJ:time temporize
3. 3 ACC:haszon + ELA 412 OBJ:profit + from profit from sg
4. 3 ACC + SUB:maga 239 OBJ + onto:oneself put sg on
5. 3 ACC + után:maga 209 OBJ + after:oneself pull sg behind oneself
6. 3 ACC + ALL:maga 207 OBJ + to:oneself pull/draw sy to oneself
7. ≈ ACC + SUB:fej 199 OBJ + onto:head put sg on one’s head
8. 3 felé 169 towards be drawn/attracted towards sg
9. 3 ACC:rövid 166 OBJ:short get the worst of it

10. 3 ACC:vonal 152 OBJ:line draw a line
11. 3 ACC:láb 139 OBJ:foot drag one’s feet
12. 3 ACC:ujj + INS 118 OBJ:finger + with pick a quarrel with sy
13. p ACC + NOM:aki 108 OBJ + SBJ:who who pulls sg
14. p ACC + TEM:az 107 OBJ + at:that pull sg at that time
15. 3 ACC + INS:maga 92 OBJ + with:oneself drag sy/sg with oneself
16. 3 ACC + felé 85 OBJ + towards pull sg towards sg
17. × ACC + közé 82 OBJ + between draw sg (a line) between sg
18. 3 ACC:szék 80 OBJ:chair draw one’s chair up
19. 3 ACC:határ 77 OBJ:border set limits
20. 3 ACC:idő + INS 77 OBJ:time + with temporize on sg

vet 14759 cast/throw
21. 3 ACC 13649 OBJ cast/throw sg
22. ≈ ACC + SUB 5437 OBJ + onto cast/throw sg on sg
23. 3 ACC:vég + DAT 2632 OBJ:end + for put an end to sg
24. 3 ACC + SUB:szem 1085 OBJ + onto:eye reproach sy for sg
25. ≈ ACC:maga 964 OBJ:oneself throw oneself
26. 3 ACC:pillantás + SUB 839 OBJ:glance + onto glance at sy/sg
27. 3 ACC + SUB:papı́r 673 OBJ + onto:paper note down sg
28. 3 ACC:fény + SUB 402 OBJ:light + onto reflect (well/badly) on sy/sg
29. 3 ACC:szám + INS 371 OBJ:number + with take sg into account
30. 3 ACC:gát + DAT 362 OBJ:obstacle + for put a stop to sg
31. ≈ ACC:maga + SUB 345 OBJ:oneself + onto throw oneself into sg
32. 3 ACC:maga + ILL 339 OBJ:oneself + into throw oneself into sg
33. p ACC:az + SUB:szem 302 OBJ:that + onto:eye reproach sy for that
34. 3 SUB:maga 297 onto:oneself have only oneself to blame
35. 3 ACC:szem + SUB 285 OBJ:eye + onto take a fancy to sy/sg
36. 3 ACC:kereszt 261 OBJ:cross cross oneself
37. 3 ACC:árnyék + SUB 258 OBJ:shadow + onto cast/throw a shadow over sy/sg
38. 3 ACC + ILL:lat 240 OBJ + into:lat use sg (one’s power)
39. p ACC + SUB:én 225 OBJ + onto:me cast/throw sg onto me
40. p ACC + NOM:aki 201 OBJ + SBJ:who who casts/throws sg

7 Evaluation
The algorithm was run on two verbs:
húz (draw/pull) and vet (cast/throw).
Then the first 20 pVCCs (accord-
ing to f value) was investigated
whether they are correct or not.

Results

70-80% of the pVCCs are perfect.

one single real error (2.5%): #17
– filler vonal (line) is missing.

Discussion
•many complete + clean pVCCs

• different pVCCs are often trans-
lated using different verbs

• optionality: #2 and #20

• our concept of completeness:
#28/#29/#30.
a certain filler → a new com-
plement→ a new pVCC

• interference: #24 and #26

8 Future Work
• handling pronouns

• better threshold values

• what to do when a few elements
seem to be mutually exclusively
mandatory at a point?
take into:account/consideration

• application for other languages
and other structures

Acknowledgement. This research
was supported by the János Bolyai
Research Scholarship of the Hun-
garian Academy of Sciences (case
number: BO/00064/17/1; duration:
2017-2020).

RANLP 2019, 2-4 September 2019

https://github.com/sassbalint/double-cube-jump-and-stay

