A Unified Method for Extracting Simple and Multiword Verbs with Valence Information and Application for Hungarian

Bálint Sass

Research Institute for Linguistics, Hungarian Academy of Sciences, Budapest, Hungary sass.balint@nytud.hu

Task

sentence	construction	structure
(1) "I believe in miracles."	x believes in y	free in-slot
(2) "The girl shrugs her shoulder."	z shrugs (z 's) shoulder	fixed object slot
(3) "Nobody takes that into consideration."	u takes v into consideration	free object slot + fixed into-slot

Free slots correspond to *valences*. Fixed slots plus the verb form a *multiword verb*.

Some constructions (e.g. take something into consideration) show both properties – being multiword and having valence at the same time.

Definition: *verb-centered constructions (VCCs)* are simple and multiword verbs, with or without valence: verb + zero or more valences + zero or more additional NPs/PPs with fixed content words. The verb together with the NPs/PPs (if any) must have non-compositional/idiomatic meaning.

Aim: to develop a method which extracts all kinds of VCCs from corpus, those also which are multiword and have valence at the same time.

Motivation. Although full-grown VCCs are frequent, they usually get out of field of vision being a borderline case between MWEs and verb subcategorization frames (SCFs). We need lexical acquisition methods to handle them also.

Method

Corpus representation. Basic unit: clause = verb + its dependents Dependent representation: slot name + ':' + the lemma of the head (if fixed)

Repr. of sentence (3), its *clause skeleton (CS)*: take SUBJ:nobody OBJ:that into:consideration \leftarrow INPUT take SUBJ OBJ into:consideration Repr. of its VCC:

Processing the corpus clauses the algorithm should detect:

(1) which slot is integral part of the VCC, (2) whether a dependent slot is free or fixed.

Main idea: we store initially all slots and all content words and allow the algorithm to get rid of (1) complete slots, when they are not integral part of a VCC; (2) content words, where they are just filling in a valence slot.

1. We take all CSs of the corpus with frequency counts.

We perform *alternating omission* that means we add some "free" CS variants to the initial list:

VCC	length
shrug SUBJ:girl OBJ:shoulder \rightarrow	4
shrug SUBJ OBJ:shoulder	3
shrug SUBJ:girl OBJ	3
shrug SUBJ OBJ	2

This step makes possible to have VCCs with free slots in the resulting list.

2. We sort the resulting verb frame list according to *length* which is: number of free slots + number of fixed slots \cdot 2.

3. Starting with the longest one we discard CSs with frequency less than 5, and

add their frequency to a one-unit-shorter frame on the list. If there are several such frames, we choose randomly. **4.** Intended VCCs are the final remaining verb frames, ranked by cumulative frequency.

Evaluation

Corpus: Hungarian National Corpus. *Slots:* Hungarian casemarks.

Required representation is obtained from an automatic dependency annotation of the HNC. Evaluation method:

n-best lists with two annotators.

Annotation criterion. According to the defini-

tion of VCCs the annotation criterion was this:

a candidate is a true positive VCC if and only if (1) there is no fixed slots or the verbal part (verb + occurrent fixed slots) has non-compositional/idiomatic meaning; and (2) the (possibly multiword) verb truly has such a subcategorization frame which is present and this frame is complete.

Results. Average precision values by type and by n (of n-best list). The \pm percentages point out two values corresponding to the two annotators. Cohen's κ corresponds to the rightmost percentage value in every row. In the 'total' line we evaluate the first 500 candidates of the whole list.

type	n =	50	100	150	200	500	Cohen's κ
no slots	$83.0\%~\pm$	5.0%	$\textbf{82.0\%} \pm \textbf{4.0\%}$				0.53
1 free slot	94.0% \pm	2.0%	$92.0\% \pm 1.0\%$	$92.0\%~\pm~0.7\%$	$91.8\% \pm 0.8\%$		0.77
\hookrightarrow object	$99.0\%~\pm$	1.0%	$97.0\% \pm 1.0\%$	$\textbf{98.0\%} \pm 0.7\%$	$98.0\% \pm 0.5\%$		0.75
\hookrightarrow other	$\textbf{79.0\%} \pm $	1.0%	$\textbf{79.5\%} \pm 0.5\%$	$78.7\% \pm 1.3\%$	$\textbf{79.8\%} \pm \textbf{1.8\%}$		0.68
1 fixed slot	$58.0\%~\pm$	6.0%	$44.0\% \pm 3.0\%$				0.64
\hookrightarrow subject	$20.0\%~\pm$	6.0%	$19.0\%\pm 6.0\%$				0.43
\hookrightarrow other	$83.0\%~\pm$	1.0%	$80.5\% \pm 1.5\%$				0.33
2 free slots	$\textbf{77.0\%} \pm$	7.0%	$\mathbf{66.5\%} \pm \mathbf{8.5\%}$				0.63
1 free + 1 fixed	$94.0\%~\pm$	0.0%	$\mathbf{88.5\%} \pm 3.5\%$	$87.0\%~\pm~3.0\%$	$\textbf{83.3\%} \pm \textbf{3.3\%}$		0.59
2 fixed slots	$51.0\%~\pm$	7.0%	$\mathbf{39.0\%} \pm 5.0\%$				0.50
total	$94.0\%~\pm$	0.0%	$\textbf{93.5\%} \pm 1.5\%$	$\mathbf{89.3\%} \pm 1.3\%$	$\mathbf{89.5\%} \pm 1.5\%$	$\textbf{88.9\%} \pm \textbf{1.3\%}$	0.65
Discussion.	1						•

"take SUBJ OBJ into:consideration" will be on the resulting list because in the corpus clauses whose main verb is take, • the into slot is usually filled by the word consideration – so its frequency can cumulate, • but the OBJ slot is much more variable – so words in this slot are more easily dropped out.

The method is a generalization of a former subcategorization frame extraction method. Our contribution: the idea of storing all content words, the alternating omission procedure, and the suitable definition of length for VCCs.

The representation and the method is in essence *language independent*, it could be applied to other languages as well.

Examples

First ten real VCCs with 1 free + 1 fixed slot from the resulting list. 'X' means that the particular Hungarian casemark do not have an exact English counterpart.

1. van szó -rÓl be word-SUBJ ABOUT \approx 'something is said'	 6. vesz figyelem-bA -t take consideration-INTO OBJ 'take something into consideration'
2. tesz lehető-vÁ -t make possible-X OBJ 'make something possible'	7. hoz lét-rA -t bring being-INTO OBJ 'create something'
 3. van szükség -rA be need-SUBJ ONTO 'something is wanted' 	 8. tart fontos-nAk -t hold important-FOR OBJ 'think something is important'
4. vesz ész-rA -t take mind-ONTO OBJ 'became aware of something'	9. vesz rész-t -bAn take part-OBJ IN 'take part in something'
5. kerül sor -rA come line-SUBJ ONTO \approx 'something takes place'	10. vesz tudomás-Ul -t take knowledge-X OBJ 'take notice of something'

Discussion.

- -1 free slot: highest inter-annotator agreement. Precision values coming close to 100 percent in the case of simple transitive verbs.
- -1 non-subject fixed slot: precision values above 80 percent, but low κ values.
- -*Main result.* 1 free + 1 fixed slot (namely multiword verbs with one valence slot): precision values above 80 percent, moderate inter-annotator agreement. Significance of our approach lies in its capability to deal with multiword verbs and their valence simultaneously, handling SCFs and MWVs in a uniform general way.