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0 Introduction

Heim (1983) suggested that the analysis of presupposition projection requires that the
classical notion of meanings as truth conditions be replaced with a dynamic notion
of meanings as Context Change Potentials.1 But as several researchers later noted,
the dynamic framework is insufficiently predictive: it allows one to state that, say, the
dynamic effect of F and G is to first update a Context Set C with F and then with
G (i.e., C[F and G] = C[F ][G]), but it fails to explain why there couldn’t be a ‘de-
viant’ conjunction and* which performed these operations in the opposite order (i.e.,
C[F and* G] = C[G][F ]) (Soames 1989; Heim 1990, 1992). We provide a formal intro-
duction to a competing framework, the Transparency theory (Schlenker 2006b), which
addresses this problem. Unlike dynamic semantics, our analysis is fully classical, i.e., bi-
valent and static. And it derives the projective behavior of connectives from their bivalent
meaning and their syntax. We concentrate on the formal properties of a simple version
of the theory, and we prove that (i) full equivalence with Heim’s results is guaranteed in
the propositional case (Theorem 1), and that (ii) the equivalence can be extended to the
quantificational case (for any generalized quantifiers), but only when certain conditions
are met (Theorem 2).

1 The Transparency theory

The intuition we pursue is that the presupposition p of a clause pp′ is simply a distin-
guished part of a bivalent meaning, one which is conceptualized as a ‘pre-condition’ of
the entire meaning. We do not seek to explain how certain parts of the meaning of a con-
stituent are conceptualized as being its ‘pre-conditions’. This is another form of the old
‘triggering problem’ for presuppositions, i.e., the problem of determining how elementary
clauses come to have presuppositions to begin with. Since we are interested in the pro-
jection problem rather than in the triggering problem, we simply stipulate in the syntax
of the object language that a clause represented as pp′ has the truth-conditional content
of the conjunction p and p′, but that p is conceptualized as being the pre-condition of
the entire meaning. On the other hand, our goal is to give an explanatory account of
presupposition projection. The crucial intuition is that a general pragmatic principle
(presumably a Gricean maxim of manner, which we call Be articulate!) requires that,
if possible, the special status of the pre-condition should be articulated, and thus that
one should say p and pp′ rather than just pp′. To illustrate, the principle requires that, if

1 A full version of the paper is available as Schlenker (2006a). I wish to thank the following for
critical comments and suggestions: Richard Breheny, Emmanuel Chemla, Danny Fox, Bart Geurts,
Irene Heim, Uli Sauerland, Barry Schein, Roger Schwarzschild, Ken Shan, Benjamin Spector, Dan
Sperber, Anna Szabolcsi, Deirdre Wilson, as well as audiences in Paris (Institut Jean-Nicod),
Berlin (Semantiknetzwerk), London (University College London), Gargnano (Milan Meeting 2006)
and Rutgers University. The author gratefully acknowledges the financial support of the American
Council of Learned Societies (’Ryskamp Fellowship’) and of UCLA.
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possible, one should say It is raining and John knows it rather than just John knows that
it is raining.

If we were to stop here, we would make the absurd prediction that John knows that
p is never acceptable unless immediately preceded by p and . But there are indepen-
dent pragmatic conditions that sometimes rule out the full conjunction. It is precisely

when these conditions are met that John knows that p is acceptable on its own. In this
paper we will only consider cases in which the full conjunction is ruled out because the

utterance of the first conjunct is certain to be dispensable no matter what the end of

the sentence turns out to be (see Schlenker 2006c for a sketch of further conditions, with
several new predictions). This constraint is motivated by facts that have nothing to with
presupposition projection:

(1) a. Context: Everyone is aware that Pavarotti has cancer.

i. ?Pavarotti is sick and he won’t be able to sing next week.

ii. Pavarotti won’t be able to sing next week.

b. Context: Nothing is assumed about Pavarotti’s health.

i. # Pavarotti has cancer and he is sick and he won’t be able to sing next
week.

ii. Pavarotti has cancer and he won’t be able to sing next week.

c. Context: Nothing is assumed about Pavarotti’s health.

i. # If Pavarotti has cancer, he is sick and he won’t be able to sing next
week.

ii. If Pavarotti has cancer, he won’t be able to sing next week.

The infelicitous examples are all cases in which one can determine as soon as one has
heard Pavarotti is sick and that no matter how the sentence will end, these four words
will have been uttered in vain because they could not possibly affect the truth-conditions
of the sentence relative to the Context Set. Specifically, in a Context Set C in which it
is assumed that Pavarotti has cancer, we can be sure that no matter what the second
conjunct γ is, Pavarotti is sick and γ is equivalent in C to γ. We will say that given C these
two sentences are contextually equivalent (i.e., C |= (Pavarotti is sick and γ) ⇔ γ).
Similarly, in any Context Set in which it is assumed that cancer is a disease, Pavarotti
has cancer and he is sick and γ is contextually equivalent to Pavarotti has cancer and
γ; and by the same reasoning, If Pavarotti has cancer, he is sick and γ is contextually
equivalent to If Pavarotti has cancer, γ. In all these cases, then, one can ascertain as soon
as one has heard he is sick and that these words were uttered in vain. Any reasonable
pragmatics should presumably rule this out, as suggested by (1) above.2

These observations lead us to the following definition:

(2) Given a Context Set C, a predicative or propositional occurrence of d is trans-
parent (and hence infelicitous) at the beginning of a sentence α (d and just in
case for any expression γ of the same type as d and for any sentence completion
β, C |= α(d and γ)β ⇔ αγβ.

2 Note, however, that we don’t want to make the prohibition against redundant material too strong.
For it is sometimes permissible to include a conjunct that turns out to be dispensable, but just in
case one may only determine later in the sentence that the conjunct in question was eliminable.
This scenario is illustrated in (i):
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Our observations can now be summarized by noting that α(d and d′) . . . is semantically
deviant if d is transparent. Going back to the analysis of presupposition, it is clear that
when d is transparent, a full conjunction (d and dd′) will be systematically ruled out, which
will leave dd′ as the sole contender, and thus as the ‘winner’ in the competition process.
Assuming for simplicity that Transparency is the only pragmatic principle that can rule
out a full conjunction (d and dd′), we are finally led to our formula for presupposition
projection:

(3) Principle of Transparency
Given a Context Set C, a predicative or propositional occurrence of dd′ is accept-
able at the beginning of a sentence αdd′

if and only if the ‘articulated’ competitor α(d and dd′) is ruled out because
d is transparent;

if and only if for any expression γ of the same type as d and for any sentence
completion β, C |= α(d and γ)β ⇔ αγβ.

We now show that the Principle of Transparency is sufficient to derive almost all of
Heim’s projection results (in ongoing research (Schlenker 2006c), we explore extensions
of Transparency which make different predictions from Heim’s and address some of the
criticisms that were raised against her account).

2 Formal systems

2.1 Syntax

To make our analysis precise, we define a syntax in which the presuppositions of atomic
clauses are underlined (the parts in bold do not belong to the object language but will be
used in the meta-language):

(4) Syntax

• Generalized Quantifiers: Q ::= Qi ;

• Predicates: P ::= P i | P iP k | (Pi and Pk);

• Propositions: p ::= pi | pipk ;

• Individual variables: d ::= di ;

• Formulas: F ::= p | (not F ) | (F and F ) | (F or F ) | (if F . F ) | (QiP.P )
| P(d) | ∀dF | ∃dF | [F ⇒ F] | [F ⇔ F].

Terminology: We will say that pi , pipk are ‘atomic propositions’ and that P i , P iP k are
‘atomic predicates’.

The following Lemma will be useful (the proof is omitted for brevity):

(i) a. John resides in France and he lives in Paris.

b. If he is in Europe, John resides in France and he lives in Paris.

In both examples the contextual meaning of the sentence would be unaffected if we deleted the words
John resides in France and. However this is something that can only be ascertained after one has heard
the end of the sentence. Thus in (b) one needs to hear the entire sentence to determine that the first
conjunct John resides in France was redundant (if the end of the sentence had been . . . and he is happy,

the first conjunct would not have been redundant).
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(5) Syntactic Lemma

a. If α is the beginning of a constituent in a string F , then α is the beginning of
a constituent in any well-formed string that contains α.

b. If a formula F starts with (s, where s is a symbol different from a parenthesis,
then the smallest initial string C of F which is a constituent is F itself.

2.2 Semantics

2.2.1 Framework and interpretation of lexical items

We define the semantics for a (possibly infinite) domain of possible worlds W , each of
which has a domain of individuals Dw of a fixed finite size n. We write [A → B] to denote
the set of functions with domain A and codomain B, and we use standard type-theoretic
notation wherever useful (e.g., 〈s, t〉 is the type of propositions, i.e., of functions from
possible worlds to truth values; and 〈s, 〈e, t〉〉 is the type of properties, i.e., of functions
from possible worlds to characteristic functions of sets).

(6) Interpretation of lexical items
We define a static interpretation function I. For all i ≥ 0,

a. Qi is a generalized quantifier satisfying Permutation Invariance, Extension and
Conservativity (Keenan 1996). Its value is entirely determined by a numerical
function f i in [N×N → {0, 1}], which we call the ‘tree of numbers’ of Qi (van
Benthem 1986). Thus for all w ∈ W , Iw (Qi) is of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, and
for all A, B of type 〈e, t〉, Iw (Qi)(A)(B) = 1 iff f i(|A \ B|, |A ∩ B|) = 1;

b. Iw (P i) ∈ [W → [D → {0, 1}]] (i.e., it is of type 〈s, 〈e, t〉〉);

c. Iw (pi) ∈ [W → {0, 1}] (i.e., it is of type 〈s, t〉).

Notation: We write Fw instead of Iw (F ). When some elements are optionally present in
the syntax, we write them between curly brackets, and write the corresponding part of
the truth conditions inside curly brackets as well.

2.2.2 Dynamic semantics

Next, we define a dynamic semantics which is precisely that of Heim (1983), augmented
by the analysis of disjunction offered in Beaver (2001) (Heim did not discuss disjunction).

(7) Dynamic (Trivalent) Semantics
Let C be a subset of W .

• C[p] = {w ∈ C: pw = 1};

• C[pp′] = # iff for some w ∈ C, pw = 0; otherwise, C[pp′] = {w ∈ C: p′w = 1};

• C[(not F )] = # iff C[F ] = #; otherwise, C[(not F )] = C \ C[F ];

• C[(F and G)] = # iff C[F ] = # or (C[F ] 6= # ∧ C[F ][G] = #); otherwise,
C[(F and G)] = C[F ][G];

• C[(F or G)] = # iff C[F ] = # or (C[F ] 6= #∧C[not F ][G] = #); otherwise,
C[(F or G)] = C[F ] ∪ C[not F ][G];

• C[(if F . G)] = # iff C[F ] = # or (C[F ] 6= # ∧ C[F ][G] = #); otherwise,
C[(if F . G)] = C \ C[F ][not G];
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• C[(Qi{P}P ′.{R}R′) = # iff {for some w ∈ C, for some d ∈ D, Pw(d) = 0}
or {for some w ∈ C, for some d ∈ D, {Pw(d) = 1 and} P ′w(d) = 1 and
Rw (d) = 0}. Otherwise, C[(Qi{P}P ′.{R}R′)] = {w ∈ C: f i(a

w , bw ) = 1}
with aw = {d ∈ D : P ′w(d) = 1 ∧ R′w (d) = 0}, bw = {d ∈ D: P ′w(d) =
1 ∧ R′w (d) = 1}.

2.2.3 Static semantics

Sincd our goal is to show that the results of Heim’s dynamic semantics can be obtained in
a fully classical logic, we should specify a classical interpretation for the language defined
in Section 2.1.

(8) Static (Bivalent) Semantics

• w |= p iff pw = 1;

• w |= pp′ iff pw = p′w = 1;

• w |= (not F ) iff w 6|= F ;

• w |= (F and G) iff w |= F and w |= G;

• w |= (F or G) iff w |= F or w |= G;

• w |= (if F . G) iff w 6|= F or w |= G;

• w |= (Qi{P}P ′.{Q}Q′ iff f i(a
w , bw ) = 1 with aw = {d ∈ D: {Pw(d) = 1 and}

P ′w(d) = 1 and ({Rw (d) = 0 or} R′w (d) = 0)}, bw = {d ∈ D: {Pw (d) = 1
and} P ′w (d) = 1 and {Rw(d) = 1 and} R′w (d) = 1}.

3 Propositional case

We now prove that in the propositional case Transparency Theory is equivalent to Heim’s
system. We assume that the language is sufficiently expressive to include tautologies and
contradictions.

Theorem 1

Consider the propositional fragment of the language defined above. For any formula
F and for any C ⊆ W :

(i) Transp(C, F ) iff C[F ] 6= #.

(ii) If C[F ] 6= #, C[F ] = {w ∈ C: w |= F}.

We start with a useful lemma (the proofs are omitted for brevity):

(9) Transparency Lemma

a. If for some formula G and some sentence completion δ, Transp(C, (Gδ), then
Transp(C, G).

b. If for some formula G and some sentence completion δ, Transp(C, (if G . δ),
then Transp(C, G).

We can now proceed to the proof of Theorem 1 (by induction on the construction
of formulas).

a. F = p
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(i) C[F ] 6= # and Transp(C, F ).

(ii) It is also clear that C[F ] = {w ∈ C: pw = 1} = {w ∈ C: w |= F}.

b. F = pp′.

(i) If Transp(C, F ), for any formula γ and for any sentence completion β,

C |= (p and γ)β ⇔ γβ,

hence in particular C |= (p and δ) ⇔ δ for some tautology δ, and thus C |= p.
Therefore C[F ] 6= #.

Conversely, if C[F ] 6= #, C |= p and thus for any clause γ, C |= (p and γ) ⇔ γ. It
follows that for any clause γ and for any sentence completion β, C |= (p and γ)β ⇔
γβ.3But this shows that Transp(C, F ).

(ii) If C[F ] 6= #, C |= p and C[F ] = {w ∈ C: p′w = 1} = {w ∈ C: p′w = pw = 1} =
{w ∈ C: w |= pp′}.

c. F = (not G).

(i) Suppose that Transp(C, F ) and suppose, for contradiction, that C[F ] = #. Then
C[G] = # and by the Induction Hypothesis not Transp(C, G), i.e., for some initial
string αdd′ of G, for some appropriate expression γ, for some sentence completion
β, and for some world w ∈ C,

w 6|= α(d and γ)β ⇔ αγβ.

But if so, w 6|= (not α(p and γ)β) ⇔ (not αγβ)], and hence not Transp(C, F ).
Contradiction.

For the converse, suppose that C[F ] 6= #. Then C[G] 6= #, and by the Induction
Hypothesis Transp(C, G). Now suppose, for contradiction, that not Transp(C, F ).
Then for some initial string αdd′ of G, for some appropriate expression γ, for some
sentence completion β, and for some w ∈ C,

w 6|= (not α(d and γ)β ⇔ (not αγβ.

By clause (b) of the Syntactic Lemma in (5), (not α(d and γ)β is the smallest initial
string of itself which is a constituent. It follows that β is of the form δ), and thus:

w 6|= (not α(d and γ)δ) ⇔ (not αγδ)

and, therefore,
w 6|= α(d and γ)δ ⇔ αγδ.

But this shows that not Transp(C, G). Contradiction.

(ii) If C[F ] 6= #, C[F ] = C \C[G]. By the Induction Hypothesis, C[G] = {w ∈ C: w |=
G} and thus C[F ] = C \ {w ∈ C: w |= G} = {w ∈ C: w |= (not G)}.

3 In fact, the syntax in 2.1 guarantees that the only acceptable sentence completion is one in which
β is the null string.
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d. F = (G and H).

(i) Suppose that Transp(C, F ). By the Transparency Lemma (part (a)), Transp(C, G).
By the Induction Hypothesis, C[G] 6= #, and by the Induction Hypothesis (part
(ii)) C[G] = {w ∈ C: w |= G}. Calling C ′ = {w ∈ C: w |= G}, we claim that
Transp(C ′, H). For suppose this were not the case. For some initial segment αdd′

of H , for some appropriate expression γ, for some sentence completion β, and for
some world w′ ∈ C ′, we would have w′ 6|= α(p and γ)β ⇔ αγβ. But then w′ would
refute Transp(C, (G and H)) because we would have w′ 6|= (G and α(d and γ)β) ⇔
(G and αγβ) with w′ |= G. So Transp(C ′, H), and thus by the Induction Hypothesis
(Part (i)) C ′[H ] 6= #, i.e., C[G][H ] 6= #. For the converse, suppose that C[F ] 6= #.
Then C[G] 6= # and C[G][H ] 6= #. By the Induction Hypothesis, Transp(C, G),
C[G] = {w ∈ C: w |= G} (a set we call C ′), and Transp(C ′, H). Suppose, for
contradiction, that not Transp(C, F ), and let w ∈ C satisfy w 6|= α(p and γ)β ⇔
αγβ, where αdd′ is an initial string of (G and H).

– Let us first show that this occurrence of dd′ is not part of G. For suppose,
for contradiction, that it is. Then for some initial string α′ of G we have
w 6|= (α′(d and γ)β ⇔ (α′γβ. α′dd′ is the beginning of a constituent in G, and
thus by the Syntactic Lemma (part (a)), it is the beginning of a constituent
in (α′dd′β. Let β ′ be the smallest initial string of β for which α′dd′β ′ is a
constituent. Since w 6|= (α′(d and γ)β ⇔ (α′γβ, it must also be that w 6|=
α′(d and γ)β ′ ⇔ α′γβ ′. But this shows that not Transp(C, G), contrary to
what was shown earlier.

– So this occurrence of dd′ appears in H . Thus for some initial string α′dd′ of
H , for some appropriate expression γ and for some sentence completion β, we
have:

w 6|= (G and α′(d and γ)β ⇔ (G and α′γβ.

Since α′dd′ is the beginning of a constituent in H , α′dd′ is also the begin-
ning of a constituent in α′dd′β (Syntactic Lemma, part (a)). Furthermore,
since G is a constituent, (G and α′(d and γ)β and (G and α′γβ must be of the
form (G and α′(d and γ)β ′) and (G and α′γβ ′), respectively. It follows that
G must be true at w, for otherwise both formulas would be false and they
would thus have the same value at w, contrary to hypothesis. So w |= G.
But since w 6|= (G and α′(d and γ)β ′) ⇔ (G and α′γβ ′), so it must be that
w 6|= α′(d and γ)β ′ ⇔ α′γβ ′. But then it follows that not Transp(C ′, H),
since w ∈ C ′ and α′dd′ is an initial segment of H . But this contradicts our
hypothesis. Thus Transp(C, (G and H)), i.e., Transp(C, F ).

(ii) If C[F ] 6= #, C[F ] = C[G][H ] = {w ∈ C: w |= G}[H ] = {w ∈ C: w |= (G and H)}.

e. F = (G or H).

(i) Suppose that Transp(C, F ). Then, by the Transparency Lemma (part (a)), it is
also the case that Transp(C, G). By the Induction Hypothesis, C[G] 6= #, and
C[G] = {w ∈ C: w |= G}. Therefore C[(not G)] = C \ C[G] = {w ∈ C: w 6|= G}
(call this set C ′). It follows that Transp(C ′, H), because otherwise for some initial
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segment αdd′ of H , for some appropriate expression γ, for some sentence completion
β and for some w′ ∈ C ′, we would have:

w′ 6|= α(d and γ)β ⇔ αγβ.

But since w′ 6|= G,

w′ 6|= (G or α(d and γ)β) ⇔ (G or αγβ),

and thus not Transp(C, (G or H)), contrary to hypothesis. So Transp(C ′, H) and,
by the induction hypothesis, C ′[H ] 6= #, i.e., C[(not G)][H ] 6= #. By the dynamic
semantics of or, C[(G or H)] 6= #. For the converse, suppose that C[(G or H)] 6=
#. Thus C[G] 6= # and C[(not G)][H ] 6= #. By the Induction Hypothesis,
Transp(C, G) and Transp(C ′, H) with C ′ = C[(not G)]. Suppose, for contradic-
tion, that not Transp(C, F ), and let w ∈ C satisfy w 6|= α(d and γ)β ⇔ αγβ, where
αdd′ is an initial string of (G or H).

– Let us first show that this occurrence of dd′ is not part of G. Suppose, for
contradiction, that it is. Then for some initial string α′dd′ of G, for some
appropriate expression γ, for some sentence completion β and for some w ∈ C,
we have

w 6|= (α′(d and γ)β ⇔ (α′γβ.

α′dd′ is the beginning of a constituent in G, and thus, by the Syntactic Lemma
(part (a)), it is the beginning of a constituent in (α′dd′β. Let β ′ be the smallest
initial string of β for which α′dd′β ′ is a constituent. Since w 6|= (α′(p and γ)β ⇔
(α′γβ, it must also be that w 6|= α′(p and γ)β ′ ⇔ α′γβ ′. But this shows that
not Transp(C, G), contrary to what was shown earlier.

– So this occurrence of dd′ appears in H . Thus for some initial string α′dd′ of
H , for some appropriate expression γ, for some sentence completion β and for
some w ∈ C we have:

w 6|= (G or α′(p and γ)β ⇔ (G or α′γβ.

Since α′dd′ is the beginning of a constituent in H , α′dd′ is also the beginning
of a constituent in α′dd′β (Syntactic Lemma, part (a)). Furthermore, since
G is a constituent, (G or α′(d and γ)β and (G or α′γβ must be of the form
(G or α′(d and γ)β ′) and (G or α′γβ ′), respectively. It follows that G must
be false at w, for otherwise both formulas would be true and they would thus
have the same value at w, contrary to hypothesis. So w 6|= G. But since w 6|=
(G or α′(d and γ)β ′) ⇔ (G or α′γβ ′)], it must be that w 6|= α′(d and γ)β ′ ⇔
α′γβ ′. But then it follows that not Transp(C ′, H), since w ∈ C ′ and α′pp′ is an
initial segment of H . But this contradicts our hypothesis that Transp(C ′, H).
Thus Transp(C, (G and H)), i.e., Transp(C, F ).

(ii) If C[F ] 6= #, then C[G] 6= #, C[(not G)][H ] 6= #, and C[F ] = C[G]∪C[(not G)][H ].
By the Induction Hypothesis, C[G] = {w ∈ C: w |= G}, C[(not G)] = {w ∈
C: w 6|= G}, and C[(not G)][H ] = {w ∈ C : w 6|= G ∧ w |= H}. Therefore,
C[F ] = {w ∈ C: w |= G} ∪ {w ∈ C: w 6|= G ∧ w |= H} = {w ∈ C: w |= (G or H)}.
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f. F = (if G. H).

(i) Suppose Transp(C, F ). By the Transparency Lemma (part (b)), it must also be
the case that Transp(C, G). Let us now show that Transp(C ′, H) with C ′ = C[G].
Suppose, for contradiction, that this is not the case. Then for some initial segment
αdd′ of H , for some appropriate expression γ, for some sentence completion β, and
for some w′ ∈ C ′,

w′ 6|= α(d and γ)β ⇔ αγβ.

Since w′ ∈ C ′, it must also be the case that

w′ 6|= (if G. α(d and γ)β) ⇔ (if G. αγβ),

hence not Transp(C, (if G. H)), contrary to hypothesis. So Transp(C ′, H), and
thus C[G][H ] 6= #. Since C[G] 6= #, and C[G][H ] 6= #, C[(if G. H)] 6= #. For the
converse, let us assume that C[F ] 6= #. Then C[G] 6= # and C[G][H ] 6= #. Hence
Transp(C, G) and Transp(C ′, H) with C ′ = C[G], from which it also follows that
Transp(C ′, not H).

Now suppose, for contradiction, that not Transp(C, (if G. H)). Then for some
initial segment αdd′ of G.H , for some appropriate expression γ, for some sentence
completion β, and for some w ∈ C, we have

w 6|= (if α(d and γ)β ⇔ (if αγβ.

– It could not be the case that this occurrence of dd′ is in G, because in that
case we would have for some strings β ′ and β ′′:

w 6|= (if α′(d and γ)β ′. β ′′ ⇔ (if α′γβ ′. β ′′,

which could only be the case if w 6|= α′(d and γ)β ′ ⇔ α′γβ ′, and hence if not
Transp(C, G), contrary to what we showed earlier.

– Now suppose that this occurrence of dd′ is in H . For some initial string αdd′

of H , for some appropriate expression γ, for some sentence completion β, and
for some w ∈ C, we have

w 6|= (if G. α(d and γ)β) ⇔ (if G. αγβ).

But then it must also be the case that w |= G, for otherwise both sides of
the biconditional would be true at w. Furthermore, it must be the case that
w 6|= α(d and γ) ⇔ αγβ, because otherwise we would have

w |= (if G. α(d and γ)β) ⇔ (if G. αγβ).

But this shows that not Transp(C ′, H), contrary to what we showed earlier. In
sum, Transp(C, F ).

(ii) If C[F ] 6= #, C[F ] = C \ C[G][not H ]. But, by the Induction Hypothesis, C[G] =
{w ∈ C: w |= G} and C[G][not H ] = {w ∈ C: w |= G}[not H ] = {w ∈ C: w |=
(G and (not H))}, and thus C[F ] = {w ∈ C: w 6|= (G and (not H))} = {w ∈
C: w |= (if G. H)}.
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4 Quantificational case

We now turn to the quantificational case, which we treat separately because it involves
additional complications and leads to weaker equivalence results than the propositional
case. Heim’s claim is that for any generalized quantifier Q,

(i) (QPP ′.R) presupposes that every individual in the domain satisfies P , and

(ii) (QP.RR′) presupposes that every individual in the domain that satisfies P also
satisfies R.4

We will find conditions under which these predictions are indeed derived from our system.
We start by stating the conditions, and then we construct the proof in two steps: first,
we obtain the desired result for quantificational formulas that are unembedded; second,
we integrate the argument into a proof by induction that extends to all formulas of the
language.

4.1 Non-triviality and constancy

The equivalence with Heim’s result turns out to be weaker than in the propositional case;
it holds only when the Context Set satisfies additional constraints. To see why a weaker
result is obtained, let us note that there could be a world w in which Transparency is
satisfied because Q has a degenerate semantics. Consider the following scenario:

• In w, there are exactly 2 P -individuals, one of whom satisfies R and one of whom
does not.

• The sentence uttered is (QP.RR′) with Q = less than three.

Even though it is not the case that each P -individual satisfies R in w, Transparency is
trivially satisfied with respect to w, because for any predicative expression γ,

w |= (QP.(R and γ)) ⇔ (QP.γ).

Of course, the equivalence holds because no matter what the nuclear scope Y is, (QP.Y )
is true in w: since there are exactly two P -individuals, a fortiori there are less than three
individuals that satisfy both P and Y .

We will solve the problem by making two assumptions:

(i) First, we require that each quantificational clause should make a non-trivial con-
tribution to the truth conditions (= Non-Triviality). Specifically, we require that
for each initial string αA of any sentence uttered in a Context Set C, where A

is a quantificational clause (i.e., a clause of the form (QiG.H)), there is at least
one sentence completion β for which A makes a semantic contribution that could
not be obtained by replacing A with a tautology T or a contradiction F . Thus
Non-Triviality requires that for some sentence completion β,

C 6|= αAβ ⇔ αTβ;
C 6|= αAβ ⇔ αFβ.

4 Heim (1983) observes that special provisions are needed for indefinites, which trigger extremely
weak presuppositions. Thus A fat man was pushing his bicycle certainly doesn’t presuppose that
every fat man had a bicycle. We disregard this point in what follows (see Schlenker 2006b for a
remark on the treatment of indefinites in the Transparency framework).
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If the Context Set only includes worlds with less than three P -individuals, Non-
Triviality will automatically rule out any sentence of the form α(QP.RR′)β for
Q = less than three. This is because when one has heard α(QP.RR′), one can
determine that one can replace (QP.RR′) with T without modifying the contextual
meaning of the sentence, no matter how it ends.

(ii) This measure won’t be enough, however. Suppose that C = {w, w′, w′′}, where w is
the world mentioned earlier in which there are exactly two P -individuals, while w′

and w′′ are worlds that have exactly four P -individuals, with the following specifi-
cations:

w′: all P -individuals satisfy R and R′.
w′′: all P -individuals satisfy R but no P -individual satisfies R′.

Consider the sentence (QP.RR′). As before, Transparency is satisfied in w (despite
the fact that in w some P -individual does not satisfy R). Furthermore, Transparency
is also satisfied in w′ and w′′, because in these worlds each P -individual satisfies R.
Contrary to the case we considered in (i), however, this situation is not ruled out

by Non-Triviality:

w′ 6|= (QP.RR′) ⇔ T (the left-hand side is false, but the right-hand side is true);
w′′ 6|= (QP.RR′) ⇔ F (the left-hand side is true, but the right-hand side is false).

In this counter-example, however, it is crucial that the extension of P does not have
the same size in w (|Pw | = 2) and in w′ and w′′ (|Pw

′

| = |Pw
′′

| = 4). We will see that this
property is indeed essential to construct the problematic examples, and that when Non-
Triviality is combined with the requirement (‘Constancy’) that the size of the extension of
each restrictor be fixed throughout the Context Set, the equivalence with Heim’s theory
can indeed be achieved.

Before we prove our (limited) equivalence result, let us give a precise statement of
Non-Triviality:

(10) Definition of Non-Triviality Let C be a Context Set, and let F be a formula.
〈C, F 〉 satisfies Non-Triviality just in case for any initial string of the form αA,
where A is a quantificational clause (i.e., a formula of the form (QiG.H)), there
is a sentence completion β such that:

C 6|= αAβ ⇔ αTβ;
C 6|= αAβ ⇔ αFβ,

where T is a tautology and F is a contradiction.

An immediate consequence of the definition will turn out to be useful:

(11) Non-Triviality Corollary Let Qi be a generalized quantifier with the associated
tree of numbers f i . Consider a formula (QiG.H), evaluated in a Context Set C.
Then:

(i) If 〈C, (QiG.H)〉 satisfies Non-Triviality and if in C the domain of individuals
is of constant finite size n, then

{f i(a, b): a, b ∈ N ∧ a + b ≤ n} = {0, 1};

(ii) If 〈C, (QiG.H)〉 satisfies Non-Triviality and if in C the extension of G is of
constant finite size g, then

{f i(a, b): a, b ∈ N ∧ a + b = g} = {0, 1}.
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4.2 Sketch of the proof

As announced, the proof proceeds in two steps. First, we show that under the assumptions
of Constancy and Non-Triviality, the Transparency framework makes the same predictions
as Heim’s system for unembedded quantificational sentences. Second, we integrate this
result to a proof by induction that applies to all sentences of the language.

Lemma 1

Let Qi be a generalized quantifier with the associated tree of numbers f i .

(i) Suppose that

(a) throughout C, the domain of individuals is of constant finite size n;

(b) any property over the domain can be expressed by some predicate; and

(c) {f i(a, b): a, b ∈ N ∧ a + b ≤ n} = {0, 1}.

Then Transp(C, (QiPP ′.R)) iff C |= ∀dP (d).

(ii) Suppose that

(a) throughout C, the extension of P is of constant finite size p;

(b) any property over the domain can be expressed by some predicate; and

(c) {f i(a, b): a, b ∈ N ∧ a + b = p} = {0, 1}.

Then Transp(C, (QiP.RR′)) iff C |= ∀d[P (d) ⇒ R(d)].

Remark: By the Non-Triviality Corollary:
(i.c) can be replaced with ‘〈C, (QiPP ′.R)〉 satisfies Non-Triviality’, and
(ii.c) can be replaced with ‘〈C, (QiP.RR′)〉 satisfies Non-Triviality.’

Proof: Omitted for brevity. We note that in (i) and (ii) the if part is immediate (for (ii),
because of Conservativity), and thus only the only if part needs to be discussed. See the
full paper for a proof, in which crucial use is made of the fact that Qi can be represented
in terms of the tree of numbers f i(a, b), for variable a and b.

We must now combine Lemma 1 with the equivalence proof developed for the propo-
sitional case to yield a result that holds of quantificational languages. We will do so in
two steps:

(i) First, we show, in Lemma 2, that if 〈C, F 〉 satisfies Non-Triviality, then all the pairs
〈C ′, F ′′〉 which must be ‘accessed’ (in a sense to be made precise) in the computation
of C[F ] also satisfy Non-Triviality.

(ii) Second, we combine the results of Lemma 1 and Lemma 2 to provide a general
equivalence result between Transparency and Heim’s results for quantificational
languages.

We start by defining the pairs 〈C, F 〉 which must be ‘accessed’ in the computation
of C[F ].

Definition 1

Let C be a Context Set, and F be a formula. We simultaneously define the relation
〈C ′, F ′〉 is accessed by 〈C, F 〉 and 〈C ′′, F ′′〉 is a parent of 〈C ′, F ′〉 by the following
induction:
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(i) 〈C, F 〉 is accessed by 〈C, F 〉;

(ii) If 〈C ′, (not F ′)〉 is accessed by 〈C, F 〉, then 〈C ′, F ′〉 is accessed by 〈C, F 〉 and
〈C ′, (not F ′)〉 is the parent of 〈C ′, F ′〉.

(iii) If 〈C ′, (G and H)〉 is accessed by 〈C, F 〉, then 〈C ′, G〉 is accessed by 〈C, F 〉 and
〈C ′, (G and H)〉 is the parent of 〈C ′, G〉; and if C ′[G] is defined, 〈C ′[G], H〉 is
accessed by 〈C, F 〉 and 〈C ′, (G and H)〉 is the parent of 〈C ′[G], H〉.

(iv) If 〈C ′, (G or H)〉 is accessed by 〈C, F 〉, then 〈C ′, G〉 is accessed by 〈C, F 〉 and
〈C ′, (G or H)〉 is the parent of 〈C ′, G〉; and if C ′[G] is defined, 〈C ′[(not G)], H〉
is accessed by 〈C, F 〉 and 〈C ′, (G or H)〉 is the parent of 〈C ′[(not G)], H〉.

(v) If 〈C ′, (if G. H)〉 is accessed by 〈C, F 〉, then 〈C ′, G〉 is accessed by 〈C, F 〉 and
〈C ′, (if G. H)〉 is the parent of 〈C ′, G〉; and if C ′[G] is defined, 〈C ′[G], H〉 is
accessed by 〈C, F 〉 and 〈C ′, (if G. H)〉 is the parent of 〈C ′[G], H〉.

Lemma 2

Suppose that 〈C, F 〉 satisfies Non-Triviality. Then if 〈C ′, F ′〉 is accessed by 〈C, F 〉,
〈C ′, F ′〉 satisfies Non-Triviality as well.

Proof: One shows by induction that if 〈C ′, F ′〉 is accessed by 〈C, F 〉 and violates Non-
Triviality, then either 〈C ′, F ′〉 = 〈C, F 〉, or 〈C ′, F ′〉 has a parent that also violates Non-
Triviality. A trivial induction on the definition of pairs 〈C ′, F ′〉 that are accessed by
〈C, F 〉 will then yield the Lemma.

Theorem 2

Let C be a Context Set and F be a formula. Suppose that (i) the domain of
individuals is of constant size over C; (ii) the extension of each restrictor that
appears in F is of constant size over C; and (iii) 〈C, F 〉 satisfies Non-Triviality.
Then for every 〈C ′, F ′〉 which is accessed by 〈C, F 〉 (including 〈C, F 〉 itself):

(i) Transp(C ′, F ′) iff C ′[F ′] 6= #.

(ii) If C ′[F ′] 6= #, C ′[F ′] = {w ∈ C ′: w |= F ′}.

Proof: Omitted for brevity. The argument is by induction on the construction of F ′. It is
similar to the proof of Theorem 1, with some additions to steps (a–f) and one additional
step (for the quantificational case).
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