Do Hungarian preschoolers always understand number words exactly?

Mátyás Gerőcs - Lilla Pintér Pázmány Péter Catholic University

 Hungary- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion
- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion

Research questions

- Can children differentiate between the 'at least' and 'exactly' readings of numerals?
- How does the manipulation of the pragmatic environment affect children's interpretation of numerals?
- How do the results obtained contribute to the semantic debate on the default meaning of numerals and on the analysis of Hungarian pre-verbal focus?
- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion
- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion

Background

Different interpretations of the numerals:
(1) - How many mistakes did you make?

- I made five mistakes.
(2) You need to make five mistakes to be allowed to take the test again.
(3) You can make five mistakes and still pass this test.

What is the default meaning?

The neo-Gricean view

Horn 1972, Levinson 2000

Default meaning: „at least n"

Scalar implicature

Scalar implicature:
„exactly n"

Maxim of Quantity
(4) John: Are the cakes ready?

Mary: Some of them are.
\rightarrow implicature: some but not all
(5) John: Are the cakes ready?

Mary: Three of them are.
\rightarrow implicature: no more than three

The Alternative Approach

Geurts 2006, Breheny 2008

Default meaning:
„exactly n"

Existential Closure

Implicature:

"at least n"

- 'at least' reading
\rightarrow an instance of Existential Closure
- EXISTS [a set of cardinality n]
- comptaible with both the lower-bound and upperbound readings
- Breheny (2008): „pragmatically derived existential closure"

Hungarian data

- In Hungarian the distinction between the lower and upper bound meaning of numerals is claimed to be structure dependent.
- Numerals appearing in focus position obligatorily receive an 'exactly' reading.
- Numerals in other positions are interpeted as 'at least n'.

> (É. Kiss 1998, 2010)
(8a) János 15 PALACSINTÁT evett meg. John 15 pancake.ACC eat.Sg3.PRT 'John ate exactly fifteen pancakes.'
(8b) János meg.evett 15 palacsintát. John PRT.eat.Sg3 15 pancake.ACC 'John ate at least fifteen pancakes.'

The standard analysis

(i) the default meaning of numerals is 'at least n' (Horn 1972)
(9) Aki fel-nevelt két gyereket, az 15% nyugdijemelésre jogosult.
'Who brought up (at least) two children is entitled to a 15% pension raise.'
(ii) Hungarian preverbal focus expresses exhaustive identification which is responsible for imposing the upper-bound
(É. Kiss 2006)

- alternatives to n : all the numbers higher than n
- as a result of identification numbers not being equal to $[n]_{\text {Foc }}$ are excluded
- in the case of numerals exhaustivity manifests itself as the upper bound reading

Experimental background Scalar implicatures

Children, unlike adults, often fail to derive scalar implicatures.
might vs. must - Noveck, 2001.
some vs. all - Huang and Snedeker, 2009; Musolino, 2004; Noveck, 2001; Papafragou and Musolino, 2003.

Papafragou and Musolino, 2003.
(11) Some of the horses jumped over the fence. adults: false (92\%) children: false (12\%)
(12) Two of the horses jumped over the fence. adults: false (100\%) children: false (65\%)

Musolino presumes that children do not rely on implicatures to derive the upper bound meanings of numerals, but they rely on their default meaning which must be 'exactly n '.
(See also Huang, Snedeker and Spelke, 2004.)

Experimental background Focus sensitivity

(13) A MACI ült fel a székre.

The bear sat.Sg3.PRT the chair
'It is the bear who is sitting on the chair.'
5-year-old children: true (100\%)
(Pintér, 2011)

See also Lukács and Kas, 2013.

- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion
- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion

Experiment I.

Predictions:

- If the default meaning of numerals is indeed 'at least n',
- and children are not sensitive to exhaustivity which is claimed to be responsible for producing the upper-bound reading,
- then it follows that the 'at least' reading of numerals will be more accessible for them.

Experiment l. - Participants

- a group of 20 preschoolers (mean age 5;6)
- a group of $\mathbf{1 7}$ adult native speakers of Hungarian.

Kapjanak cukorkát azok a macik, ...
Get.IMP candy.ACC those the bear.PL
'Those bears shall get a candy ...'
(1.) ... akik szedtek három málnát.
who.PL picked three raspberry.PL.ACC
(non-focussed numeral with action verb)

(2.) ... akik HÁROM MÁLNÁT who.PL three raspberry.PL.ACC picked (focussed numeral with action verb)

'Those bears shall get a candy who picked three raspberries.'

Experiment I. - Results

- Adults: the position of the numeral had a significant effect on how the numeral got interpreted $\left(\mathrm{X}^{2}=99.5, \mathrm{df}=3, \mathrm{p}=.0001\right.$)
- Children interpreted the numeral as 'exactly n' in every single case.
- Did children believe that they were tested on counting?
- Does pragmatic highlighting have any effect on interpretation?

Experiment II.

Is the 'at least n ' meaning available at all?
(14) Elvehet egy lufit az, akinek van öt kártyája. PRT.get a ballon.ACC that who has five card.POSS 'If anybody has five cards, he or she can take a balloon.'

Hedgehog:

Experiment II. - Results

Explanations:

"I don't have five."
"I have only six."
„If this one was not here, I could have one."

Experiment III. - Background

 Musolino (2004)

Does Goofy have two cookies?
Children: 80\% - 'yes'

Experiment III.

Experiment III.

(15) Van valaki, akinek van négy almája? is someonewho-DAT has four apple-POSS 'Is there anyone, who has four apples?'

Is there anyone, who has a blue balloon?

Is there anyone, who
 has a bicycle?

Experiment III. - Results

\square Said 'yes' consequently
\square Said 'yes' once
\square Did not say 'yes'

Explanations:

"I can see only three and five, not four."

- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion
- Research questions
- Background
- Experiments

Experiment I.
Experiment II.
Experiment III.

- Discussion

Discussion

Findings:

- Children's interpretation of numerals is unaffected by the information structure of the sentence.
- Strong preference for the upper-bound ('exactly') reading.
- The influence of the context is limited.

Discussion

Conclusions:

- The results disconfirm the claims of the standard analysis.
- The 'exactly' interpretation is not a consequence of exhaustivity.
- The results are in line with the Alternative Approach:
- the default meaning of numerals is in fact 'exactly n '
- the 'at least' reading is an implicature arising through pragmatic inferences
- Children seem to have no or limited access to the lower-bound reading.

Discussion

Why is the 'at least' reading blocked if the numeral is focussed?

- Focus: answers to the Question Under Discussion (QUD, Roberts 1998)
- congruency criterion
- at issue \rightarrow cardinality of the set
- presupposed \rightarrow existance of the set
- in order to be congruent with the QUD focus must specify the cardinality of the set

Thank you for your attention!

References

- Barner, David, Brooks, Neon and Bale, Alan. 2011. Accessing the unsaid: The role of scalar alternatives in children's pragmatic inference. Cognition 118: 84-93.
- Breheny, Richard. 2008. A New Look at the Semantics and Pragmatics of Numerically Quantified Noun Phrases. Journal of Semantics 25(2): 93-140.
- É. Kiss, Katalin. 1998. Identificational focus versus information focus. Language 74: 245-73.
- É. Kiss, Katalin. 2010. Structural focus and exhaustivity. In Malte Zimmermann and Caroline Féry (eds.), Information structure: Theoretical, typological and experimental perspectives. Oxford: Oxford University Press. 64-88.
- Geurts, Bart. 2006. Take 'five'. The meaning and use of a number word. In Liliane Tasmowski and Svetlana Vogeleer (eds.), Indefiniteness and plurality. Amsterdam: John Benjamins. 311-329.
- Horn, Laurence R. 1972. On the semantic properties of the logical operators in English. Doctoral dissertation. Bloomington: Indiana University Linguistics Club.

References

- Huang, Yi Ting and Snedeker, Jesse. 2009. Online interpretation of scalar quantifiers: Insight into the semantics-pragmatics interface. Cognitive Psychology 58 (3): 376415.
- Levinson, Stephen. 2000. Presumptive meanings: The theory of generalized conversational implicature. Cambridge, MA: MIT Press.
- Musolino, Julien. 2004. The semantics and acquisition of number words: Integrating linguistic and developmental perspectives. Cognition 93: 1-41.
- Noveck, Ira A. 2001. When children are more logical than adults: Experimental investigations of scalar implicature. Cognition 78: 165-188.
- Papafragou, Anna and Musolino, Julien. 2003. Scalar implicatures: Experiments at the semantics-pragmatics interface. Cognition 86: 253-282.
- Pica, Pierre and Lecomte, Alain. 2008. Theoretical implications of the study of numbers and numerals in Mundurucu. Philosophical Psychology 21(4): 507-522.

