Preschoolers rely on visual cues in the interpretation of doubly quantified sentences: Evidence from eye tracking

Tamás Zétényi1,2, Mátyás Gerőcs ${ }^{2,3}$, Katalin É. Kiss ${ }^{2,3}$

Background
 English children interpret sentences containing a quantifier and negation in a linear/ isomorphic

1: Budapest University of Technology and Economics, 2: Institut for Linguistics of the Hungarian Academy, 3: Pázmány Péter Catholic University
manner, assigning wide scope to the initial operator (Musolino 2011). Explanation: the isomorphic reading is the default online interpretation of ambiguous sentences, the revision of
which is costly cognitively.

We found in a series of experiments that Hungarian preschoolers show no tendency to interpret sentences with two numerical quantifiers isomorphically (E.Kiss, Geröcs \& Zétényi 2012; 2013). This is all the more surprising because scope interpretation in Hungarian adult anguage is isomorphic. Thus, whereas (1) only has the isomorphic/direct scope interpretation (b) reading.
(2) Három fiú is két tornyot épit.
three boy each two tower-ACC builds
three boy each two tower-ACC builds
$\begin{array}{ll}\begin{array}{l}\text { a.'Three boys each are building two towers.' } \\ \text { b.'Two towers each are being built by three boys.' }\end{array} & \begin{array}{l}\text { (3 boys, } 6 \text { towers) } \\ (2 \text { towers, } 6 \text { boys) }\end{array}\end{array}$
b.'Two towers each are being built by three boys.' (2 towers, 6 boys)

In fact, the default reading of (2) for children, elicited in acting out tasks, is the collective reading in (3) (É. Kiss, Zétényi \& Geröcs 2012), i.e., kids don't interpret is 'each' as a distributive operator.
(3) 'A group of three boys are building a group of two towers.' (3 boys, 2 towers)

Hypothesis

the default reading of a doubly quantified sentence for a child is the collective reading, then the distributive readings - both the direct and the inverse ones - require the revision of the primary, collective interpretation. We tested if behavioral data corroborate the hypothesized evision.
revision takes place, it needs more computation during parsing and decision making, and the behavioral measures will reflect the cognitive costs.
Revision involves no linear order for the quantifiers; the preferred distributive reading is
selected on the basis of visual cues. Chunked representations are preferred to ondensed ones, and representations with 2 subevents are preferred to those with 3 subevents.

Methods

Subjects: 32 preschoolers (17 boys, 15 girls) mean age: $6 ; 3$ years
ontrol group: 23 adults (9 male, 13 female university students) ages 21-25 years.
Stimuli: 48 videos were created from the 24 test picture pairs and 24 filler picture pairs, with a vice-over of the test sentence
 Eye movements were simultaniously recorded by a Tobiii X30-2 portable eye tracker, which
was attached under the screen of the notebook.

The design of the experiment used 6 conditions.

Két lány is három TV-t néz. 'Two giris each are watching three TVs.

Három törpe is két képet fest.'Three dwarfs each are painting two pictures.

Két maci is három szánkót húz. 'Two bears each are pulling two sledges.'

Három kutya is két gödröt ás. 'Three dogs each are digging two holes.

Két fiú is három lufit tart. 'Two hoys each are holding three balloons.

Három elefánt is két vonatot húz. 'Three elefants each are pulling two trains.

Results
Direct answers \%

When both pictures are chunked, children choose the direct and inverse scope readings at nearly chance level (Conditions 1, C2).
Preference for direct scope is manifest/close to the adult level when the direct scope representation is chunked into subevents and the inverse representation is not (C5, C6). Pictures with 2 subevents (C1, C3, C5) are preferred to pictures with 3 subevents $2, \mathrm{C4}, \mathrm{C} 6$) in both groups

Variables	Adults Children	
Reaction time		
Left AOI fixations during the first 3s	$=$	
Right AOI fixations during the first 3s	$=$	
Total AOI fixations until the answer		
More AOI fixations on direct picture		
Percentage of AOI fixations on direct picture		
Total duration of AOI fixations		
More AOI visit duration on direct picture		
Percentage of AOI visit duration on direct picture		

The reaction time data show that children need more time to answer (appr. +700 ms) than adults. This seems to corroborate the hypothesis that the task is computationally more costly for children.

Eye-racking data show that in the first phase of the session, before the presentation of the est sentence, there is no difference between adults' and children's eye movements.
Children had less fixations between the exposition of the test sentence and the answer, but spent more time on each side as compared to the adults. They also visited the direct pictures wer times then the adults. This is not surprising because there is a tendency to watch the picture of choice before pressing the button, and the adults gave more direct answers
The longer duration of visits may reflect the difficulty of resolving the conflict that children xperience between the default collective interpretation of the sentence and its experience between the defauth collective
distributive readings shown in the pictures.

The total number of children's visits on the direct picture side was greater than the number of heir visits on the inverse side, which shows an emerging tendency towards adult-like interpretation.

Summary

Preschoolers ignore the linguistic cue (the particle is 'each') that forces adults to interpret distributive scope online; their default reading of doubly quantified sentences is the collective reading.
When stimuli force children to access a distributive reading, their interpretation data display longer reaction times, less fixations and longer durations.
Behavioral data reveal that children 'try harder', presumably first computing the default Of the two distributive readings, they eventually choose the one that is easier to process visually - i.e., they also exploit non-linguistic, visual information.

References

References K. Kis, K. M. Geros \& T. Zétényi (2012) The linguistic roots of multiplication. Ms. Research Institute for
Lingusistics of the Hungarian Academy of Sciences, Budapest. (http:/fininyurl.com/cy Rypkgad)

Musolino, J. (2011) Studying language acquistion through the prism of isomorphism. In J. Je Villiers \& T. Roeper
(eds.) Handbook of Generative Approaches to Language Acauistion. Springer, $319-350$.

Acknowledgement

A. Radvanyyi for their valuable help.
${ }^{1}$ This research was supported by grant 108951 of OTKA, the National Scientific Research Foundation.

