

WHAT THIS TALK IS ABOUT

- Oral place of articulation shifts cross-linguistically,
 - Specifically, I focus on shifts that consonants undergo before a heterosyllabic, coronal consonant -> pre-coronal codas
- The typology of PoA shift and the key conditions that build the typological system of PoA
- Not to be addressed:
 - Debuccalization
 - Regressive assimilation
 - Word-final codas

ROADMAP

- 1. THEORETICAL BACKGROUND
 - Place of Articulation and markedness
 - Typological observations
 - Shifts and positional effects
- 2. CASE STUDY: ITALIOT GREEK
 - The microtypology of PoA shifts in Italiot Greek dialects
- 3. TYPOLOGICAL ANALYSIS
 - OT analysis of the shifts
 - Property analysis of the typological system
- 4. CONCLUSIONS

1. THEORETICAL BACKGROUND

PLACE OF ARTICULATION AND MARKEDNESS

- Different degrees of markedness of each oral place of articulation (PoA) (de Lacy 2002, 2006; Lombardi 1995, 1998, 2002; McCarthy 1988; among others)
- Two established representations:
- (1) **Universally fixed ranking** (">> >>": "more marked than", de Lacy 2006)

 *Dorsal >> >> *Labial >> >> *Coronal
- (2) **Stringent constraints** (de Lacy 2002, 2006; see Prince 1997, 1999) *{DOR}, *{DOR, LAB}, *{DOR, LAB, COR}

THE PLACE NODE

• **Hierarchical organization** of the Place node (Rice 1994, building on ideas proposed by Avery & Rice 1989, based on previous work by Jakobson et al. 1952 and Hyman 1973; cf. Clements 1985; Sagey 1986; McCarthy 1988)

- Dorsals and labials group together to form the Peripheral node
- Parentheses indicate the unmarked value under each node

POA SHIFTS IN THE HIERARCHICAL MODEL

Shift = delinking of a feature under the Place node:

PLACE FEATURES IN CODA POSITIONS

Coda Condition (Ito 1989; Yip 1991; see also Ito 1986; Steriade 1982)

(non-word-final) codas may not have place features

```
(9) *C]σ
|
|
| [place]
```

- Only homorganic clusters and geminates are allowed
- Assumption: before an onset occupied by a coronal, only coronals can occupy the coda

PLACE FEATURES IN CODA POSITIONS

Proposed modification following the hierarchical structure:

- codas may not have place features
- Place features under the place node: [dorsal], [peripheral]

- Dorsals are specified as both [dor] and [per], labials as [per], and coronals bear no particular specification
- Depending on which coda condition dominates, a coda may not be dorsal or may not be peripheral -> gradual shifts are allowed

2. CASE STUDY: ITALIOT GREEK

ITALIOT GREEK

Two Modern Greek dialects spoken in S. Italy

- Salentinian Greek (SG)
- Calabrian Greek (CG)
- They originate from Medieval Greek (MG)

SALENTINIAN GREEK: K >P, P > T

 At a first stage of SG (SG1), MG dorsals shifted to labials (Rohlfs 1950; Karanastassis 1997; Tzitzilis 2004)

```
(11) a. o[x]tó > o[t]tó 'eight'
b. pi[k]nó > pi[v]nó 'thick'
c. (e)[y]ðérno > a[v]dér:o 'I skin'
```

• At a later stage **SG2**, both the etymological labials and the labials that came from a dorsal gave their place to a geminate coronal:

```
(12) a. e[f]tá > e[f]tá 'seven' etymological b. o[f]tó > o[f]tó 'eight' former dorsal (see 11a)
```

CALABRIAN GREEK: K,P > T

• CG neutralized the old dorsals and labials to coronals (Rohlfs 1950; Karanastassis 1997)

(13)	а. b.	o[x]tó pi[k]nó	> >		(Rochudi CG) (Bova CG) (Galliciano CG)	'eight' 'thick'
	D. С.	(e)[y]ðérno	JUUUU	(a)[d]dé	er:o	'I skin'
(14)	a.	e[f]tá	>		(Rochudi CG) (Bova CG) (Galliciano CG)	'seven'
	b. с.	ka[p]nós ra[v]ðí	>	ka[n]nó ra[d]dí		'smoke' 'stick'

TYPOLOGY

• In the diachrony of Italiot Greek we witness three the language types:

(15)	PoA	Description	Language
1	K, P, T	No merging	MG
2	P, T	K and P merge into P	SG1
3	Т	K, P, and T merge into T	CG, SG2

3. ANALYSIS

PROPOSAL

- A typological analysis of the PoA shifts examined
- Feature representation along the lines of Rice (1994)
- Framework: Optimality Theory (OT, Prince & Smolensky 1993/2004)

Goals:

- To offer an account for the stepwise shifts that result in less marked codas
- To identify the ranking conditions that yield the full factorial typology of PoA shift

OT ANALYSIS: MARKEDNESS CONSTRAINTS

- Markedness hierarchy for the PoA: K_[dor, per] > P_[per] > T
- Subset inclusion markedness constraints (MARK) to capture this hierarchy (see Prince 1997, 1999, 2002; de Lacy 2002, 2006; see also Alber & Meneguzzo 2016; Merchant & Krämer 2017)
- *K Assign a violation for each output consonant that is specified as [dorsal]
- *KP Assign a violation for each output consonant that is specified as [peripheral]
- Target: **non-final codas** (see also Zoll 1996, 1998 on positional markedness)
 - A more accurate formulation of the constraints: *K/Coda, *KP/Coda;
 I will be using the abbreviated *K and *KP

OT ANALYSIS: FAITHFULNESS CONSTRAINT

- Every delinking (or new linking) counts as a violation of faithfulness
- A faithfulness constraint ensures that the input and the output contain the same place features

FAITH Assign a violation for every input place feature that has no correspondent in the output

&

Assign a violation for every output place feature that has no correspondent in the output

VIOLATION TABLEAU

- The presence of place features in the output incurs violations on MARK
- The loss/addition of specification incurs
 violations on FAITH
- No shift towards the more marked: the candidates /P/ → [K], /T/ → [K], /T/ → [P] are harmonically bounded (see Samek-Lodovici & Prince 1999)

input	output	*KP	*K	Faith
/K/	[K]	1	1	0
	[P]	1	0	1
	[T]	0	0	2
/P/	[K]	1	1	1
	[P]	1	0	0
	[1]	0	0	1
/T/	[K]	1	1	2
	[P]	1	0	1
	[T]	0	0	0

FACTORIAL TYPOLOGY

The Factorial Typology that is generated is the following:

	Optimal candidates	Description	Languages
L.1	$K \rightarrow K, P \rightarrow P, T \rightarrow T$	Both [dorsal] and [peripheral]Marked	MG
L.2	$K \rightarrow P, P \rightarrow P, T \rightarrow T$	No [dorsal]Relatively unmarked	SG1
L.3	$K \rightarrow T$, $P \rightarrow T$, $T \rightarrow T$	No [dorsal] or [peripheral]Unmarked	SG2, CG

(17) Factorial Typology

 The crucial ranking between FAITH and the two markedness constraints yields typologically different languages

PROPERTY ANALYSIS

Property Theory (Alber & Prince 2015, in prep.; Alber, DelBusso & Prince 2016)

- <u>Properties</u>: the sufficient and necessary ranking conditions which are freely combined with each other and generate every language of a typological system
- Representation of a property P: X<>Y
- Value a: X>>Y
- Value b: Y>>X
- Mootness: a language is moot to a property if this property is inactive in this language

PROPERTY ANALYSIS OF THE POA SHIFT SYSTEM

• The properties that build our system:

(19) Properties	Value a <yes></yes>	Value b <no></no>
P1 FAITH <> *KP	FAITH >> *KP	*KP >> FAITH
P2 FAITH <> *K	FAITH >> *K	*K >> FAITH

- P1 determines the presence/absence of peripherals in a language
- P2 determines the presence/absence of dorsals in a language

PROPERTY ANALYSIS OF THE POA SHIFT SYSTEM

• The full property analysis (generated with the aid of OTWorkplace, Prince et al. 2020):

(20)	P1	P2
(20)	FAITH <> *KP	FAITH <> *K
L.1	а	а
L.2	а	b
L.3	b	moot

200000000000000000000000000000000000000	Languages
2000	MG
5	SG1
2000	CG, SG2

- P1 is set to value a for L.1 and L.2, which allow peripherals, and to value b
 for L.3, which does not
- **P2** is set to value a for L.1, which allows dorsals under the peripheral node, and to value b for L.2, which does not **L.3** is moot to P2, as, given that it does not allow a peripheral node, it cannot accommodate additional specification for dorsals

LANGUAGE CHANGE

- The change from MG (L.1) to SG1 (L.2) is captured as a change of the value of P2 (FAITH <> *K)
 - FAITH dominates *K in MG, hence the presence of [dorsal] (P2: value a)
 - FAITH was "demoted" in SG1, i.e. faithfulness to [dorsal] is no longer respected (P2: value b)
 - Both languages allow peripherals
 (P1: value a)

	P1			
(21)	FAITH		FAITH	
(21)	<> *KP	<> *K		
	*KP	*K		
L.1	а		а	
L.2	а		b	

LANGUAGE CHANGE

- The latest evolution of SalGr A (L.2) to SalGr B (L.3) was achieved through the change of the value of P1 (FAITH <> *KP)
 - *KP gets ranked above FAITH, thus peripherals are no longer allowed (P1: value b)
 - P2 is not relevant in L.3, since the prohibition of peripherals implies the prohibition of dorsals

	P 1		P2
(22)	FAITH		FAITH
(22)	<> *KP		<> *K
		*KP	*K
L.2		а	b
L.3		b	moot

LANGUAGE CHANGE

- The change from MG (L.1) to CG (L.3) is again accounted for as a change of the value of P1 (FAITH <> *KP)
 - FAITH dominates *KP in MG, hence the presence of [peripheral] (P1: value a)
 - FAITH is outranked by *KP in CG, i.e.
 faithfulness to [peripheral] is no longer
 respected (P1: value b)
 - P2 is not relevant in L.3, since the prohibition of peripherals implies the prohibition of dorsals

	P 1			P2
(23)	FAITH			FAITH
(23)		<> *KP		<> *K
	*KP			*K
L.1	а			а
L.3		b		moot

PROPERTY TREEOID

4. CONCLUSIONS

CONCLUSIONS

- PoA shift in a coda position results in a less marked coda
- Three typologically different languages are found
 - A marked one, where no place shift takes place
 - A partially unmarked one, where dorsals merge with labials by means of the delinking of [dorsal]
 - A more unmarked one, where dorsals and labials merge with coronals by means of the delinking of [peripheral] (and thus of [dorsal])
- The typological system of PoA shifts is built on the basis of the interaction of
 - a faithfulness constraint that militates against changes in the specification for place
 - (Positional) markedness constraints prohibiting the presence of certain place features in a coda

ACKNOWLEDGEMENTS

I am grateful to my PhD supervisors, Prof. Birgit Alber (UniVR) and Prof. Martin Krämer (UiT), for their insightful comments

SELECTED REFERENCES

- Alber, Birgit & Alan Prince. 2015. Outline of Property Theory. Ms, University of Verona / Rutgers University.
- Alber, Birgit, Natalie DelBusso & Alan Prince. 2016. From intensional properties to Universal Support. Language: Phonological Analysis 92.2: 88–116. [ROA-1235]
- De Lacy, Paul. 2006. Markedness: Reduction and Preservation in Phonology. Cambridge University Press.
- Ito, Junko. 1989. A Prosodic Theory of Epenthesis. *Natural Language and Linguistics Theory* 7, 217-260.
- Prince, Alan and Paul Smolensky. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA, and Oxford: Blackwell.
- Prince, Alan. 2002. Entailed ranking arguments. Ms.
- Rice, Keren. 1994. Peripheral in Consonants. Canadian Journal of Linguistics 39: 191–216
- Rohlfs, Gerhard. 1950. Historisches Grammatik der unteritalienischen Gräzität. München: H.
 Beck.

THANK YOU!