Q-Particles and Islands in Sinhala Wh-, Alternative and Polar Questions

Maribel Romero
University of Konstanz
Joint work with Erlinde Meertens

13th Conference on Syntax, Phonology and Language Analysis (SinFonIJA 13) Research Institute for Linguistics, Budapest, September 24-25, 2020

1. Introduction

- The Q(uestion)-particle $d\partial$ in (matrix) <u>simple questions</u> in Sinhala:¹
 - o Wh-questions (WhQs): da mandatorily attaches to the wh-phrase
- (1) Chitra monəwa **də** gatte Chitra what **də** bought.E 'What did Chitra buy?'

WhQ

[Slade 2011: (2) p. 19]

- Alternative questions (AltQs): də mandatorily attaches to each of the contrasting disjuncts
- (2) oyaa maalu.də mas.də kanne? you fish.də meat.də eat.E `Did you eat meat¹ or fish¹?'

AltQ

[Weerasooriya 2019: (36) p. 12]

- o Polar questions (PolQs): do can attach to a specific XP (narrow focus) or be placed at the end of the clause (broad focus):
- (3) Chitra ee potə **də** kieuwe? Chitra that book **də** read.E `Was it that book that Chitra read?'

PolQ-narrow

[Kishimoto 2005: (21a) p. 11]

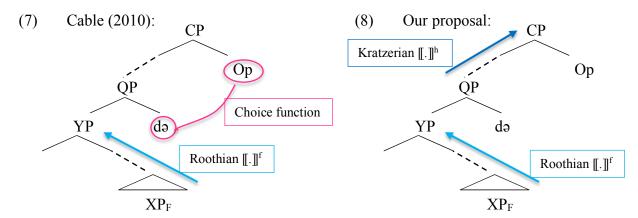
(4) Chitra ee potə kieuwa də? Chitra that book read. A də 'Did Chitra read that book?' PolQ-broad

[Kishimoto 2005: (21b) p. 11]

¹ The particle $d\vartheta$ is also used in declaratives with indefinites and with (exclusive) disjunction. For a recent analysis, see Weerasooriya (2019).

■ The Q-particle do in questions containing islands in Sinhala:

(Gair 1983, Cable 2010, Slade 2011, a.o.)


- o Wh-questions (WhQs): də cannot occur inside the island; it attaches instead at the edge of the island (Cable 2010, Slade 2011):
- (5) * Chitra [[[Ranjit [monəwa] də gatta] kiənə] katəkataawə] æhuwe?

 Chitra [[[[Ranjit [what] də bought.A] that] rumour] heard.E

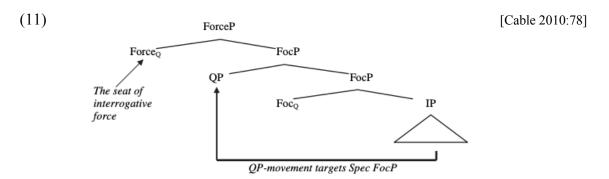
 'What_i did Chitra hear the rumor that Ranjit bought t_i?' [Slade 2011: (9) p. 21]
- (6) ✓ Chitra [[[Ranjit [monəwa] gatta] kiənə] katəkataawə] də æhuwe?

 Chitra [[[[Ranjit [what] bought.A] that] rumour] də heard.E

 `What_i did Chitra hear the rumor that Ranjit bought t_i?' [Slade 2011: (10) p. 21]
 - Alternative questions (AltQs): ----
 - o Polar questions (PolQs): ---
- The GOAL of this talk is two-fold:
 - To fill the empirical gap and present novel data on the Q-particle $d\vartheta$ in AltQs and PolQs containing islands, and
 - \circ To develop a –so far tentative! unified analysis of the meaning of $d\vartheta$ in all three question types that accounts for its distribution in the island cases
- Idea in a nutshell:
 - The semantic contribution of the Q-particle *də* –heading QP– is to mediate between the two "legs" of a semantic dependency (Hagstrom 1998, Cable 2010, Slade 2011).
 - o Previously: focus [[.]]f (Rooth 1992) + binding via a choice function variable
 - o Proposal here: focus [[.]]^f (Rooth 1992) + focus [[.]]^h (Kratzer 1991, Beck 2006)

- Roadmap:
 - §2 Previous analyses
 - §3 Novel data
 - §4 Proposal
 - §5 Conclusions and outlook

2. PREVIOUS ANALYSES


2.1. Cable (2010) on WhQs

- Back to the data on WhQ with islands:
- (9) * Chitra [Ranjit monəwa də gatta kiənə katəkataawə] æhuwe? (=5) Chitra [Ranjit what də bought.A that rumour] heard.E

 'What_i did Chitra hear the rumor that Ranjit bought t_i?' [Slade2011: (9) p. 21]
- (10) ✓ Chitra [Ranjit monəwa gatta kiənə katəkataawə] də æhuwe? (=6)
 Chitra [Ranjit what bought.A that rumour] də heard.E
 'What_i did Chitra hear the rumor that Ranjit bought t_i?' [Slade2011: (10) p. 21]

■ Syntax:

- Seemingly wh-movement is not movement of the WhP per se but of the QP [[... wh...] də]. The movement of QP is triggered by the need to check a syntactic feature in the left periphery of WhQs: (11).
- o In simple WhQs, QP is typically located immediately above the WhP; but, due to s-selection constraints, it sometimes contains more material: e.g. [WhP P]-də in (12).
- o In WhQs with islands, the QP projected by də has to include the entire island, since no syntactic dependency –including movement– can hold across an island: (9)-(10).

- (12) a. ✓ Chitra [kauru ekka] də kata kale? Chitra who with də talk did 'Who did Chitra talk with?'
 - b. * Chitra [kauru də ekka] kata kale? Chitra who də with talk did
- Semantics (regardless of whether there is an island or not):
 - F(ocus)-marking XP_F gives rise to a set of alternatives: [[.]]^f (Rooth 1992).
 Interrogative wh-words are inherently F-marked (and have no ordinary value [[.]]^o) (in the spirit of Beck 2006).
 - The Q-particle do bears an index i ranging over choice functions. The corresponding choice function f takes the Roothian [[.]] of its syntactic sister and selects an element of that set.
 - o The operator ForceQ binds the choice function f introduced by the index of $d\partial$.

```
ForceP

ForceQi

FocP

Choice function

IP

Chitra

VP

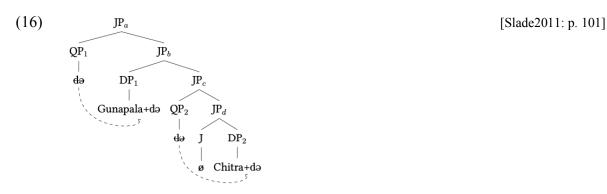
QP

talk-did

PP

with

who
F
```


```
 \begin{array}{lll} (14) & a. \ \llbracket who_F \rrbracket^f & = & \{ \ 'Chitra', \ 'Guna', \ 'Alis', \dots \} \\ & b. \ \llbracket who_F \, with \rrbracket^f & = & \{ \ 'with \, Chitra', \ 'with \, Guna', \ 'with \, Alis', \dots \} \\ & c. \ \llbracket \llbracket who_F \, with \rrbracket \, də_1 \rrbracket & = & f \, ( \{ 'with \, Chitra', \ 'with \, Guna', \ 'with \, Alis', \dots \} ) \\ & d. \ \llbracket Chitra \, \llbracket who_F \, with \rrbracket \, də_1 \, talk-did \rrbracket \\ & = \lambda w. \, TALK_w \, (chitra, \, f( \{ 'with \, Chitra', \ 'with \, Guna', \ 'with \, Alis', \dots \} )) \\ & e. \ \llbracket Force_{Q,1} \, Chitra \, \llbracket who_F \, with \rrbracket \, də_1 \, talk-did \rrbracket \\ & = \lambda p: \, \exists \, f \, \llbracket p = \lambda w'. \, TALK_{w'} \, (chitra, \, f( \{ 'with \, Chitra', \ 'with \, Guna', \ 'with \, Alis', \dots \} )) \, \rrbracket \\ & = \{ \ 'that \, Chitra \, talked \, with \, Chitra', \ ''that \, Chitra \, talked \, with \, Guna', \ ''that \, Chitra \, talked \, with \, Alis', \dots \} \\ \end{array}
```

2.2. Slade's (2011) extension to AltQs and PolQs

■ AltOs:

- o Challenge: Intuitively, in (15) we need to choose <u>once</u> from the set {gunapala, chitra}. Why then two occurrences of da?
- o Slade's (2011) attempt: (16)-(17)
- (15) Gunəpalə **də** Chitra **də** gamətə giye?
 Gunapala **də** Chitra **də** village.Dat go.Past.E
 'Did Gunapala[†] or Chitra[‡] go to the village?'

[Slade2011: (49) p. 100]

(17) Junction Rule [simplified here to match the types in (15)] λx_e . $\lambda f_{\langle et,e \rangle}$. λy_e . $\{y\} \cup \{f(\{\lambda z_e,z\}(x))\}$ gunapala chitra

{chitra}
chitra
{chitra}
{gunapala, chitra}

PROBLEM 1 for the choice function view of $d\vartheta$: No rationale or deeper explanation justifying multiples occurrences of $d\vartheta$.

■ PolOs

- o Challenge: No intuitive link between $d\partial$ and interrogativity in PolQs. Intuitively, (18) does not ask to choose from the set of alternatives {ranjit, chitra, alis...} of the $d\partial$ -marked DP; rather, (18) asks to choose between 'yes' and 'no'.
- Slade's (2011) idea: PolQs with narrow $d\partial$ are reduced to the corresponding AltQs (also with narrow $d\partial$): (19)
- (18) Ranjit_F **də** aawe? Ranjit_F **də** come.Past.E 'Was it Ranjit who came?'
- (19) [Ranjit_F **də** came] (or) [not Ranjit_F **də** came]

3. Novel Data on the Q-Particle in AltQs and PolQs with $\mbox{islands}^2$

- Recall again the data on WhQ with islands:
- Complex NP-island: (20)
 - a. * Chitra [Ranjit monəwa də gatta kiənə katəkataawə æhuwe? (=9)Chitra [Ranjit what **də** bought.A that rumour]
 - b. ✓ Chitra [Ranjit monəwa gatta kiənə katəkataawə **də** æhuwe? (=10)Chitra [Ranjit what bought.A that rumour] də heard.E 'What_i did Chitra hear the rumor that Ranjit bought t_i?'

■ AltQs:

- (21) Complex NP-island:
 - a. ???John [Chris də Ali də French katha karanawa kiyana kathawa] thahawuru kale? John Chris da Ali da French speak do that rumour | confirm
 - John Chris French katha karanawa kiyana kathawa də (nethnam) John Chris French speak do rumour **də** (if not) that Ali French katha karanawa kiyana kathawaw | də thahawuru kale? Ali French speak do that rumour da confirm 'Did John confirm the rumor that Chris speaks French or that Ali speaks French?'
- (22)Adjunct-island:
 - a. ??? John [Chris də Ali də chitra.patiya balanna kalin] kema keewae John Chris də Ali də film before meal ate.E
 - b. ✓ John [Chris chitra.pativa balanna kalin] də (nethnam) before do (if not) John Chris film see Ali chitra.patiya balanna kalin | də kema keewae Ali film see before do meal ate.E

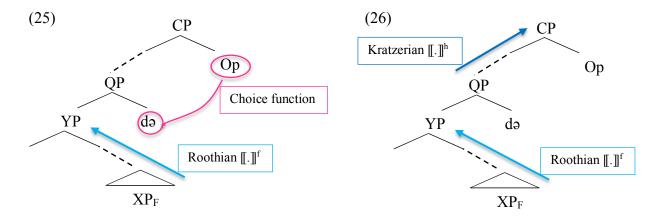
'Did John have dinner before Chris finished the film or before Ali finished the film?'

■ PolQs:

- (23)Complex NP-island:
 - a. ✓ John [Chris də French katha karanawa kiyana kathawa] thahawuru kale. ? John Chris do French speak do COMP rumour confirm
 - b. ✓ John Chris_F French katha karanawa kiyana kathawa da thahawuru kale? John Chris French speak do COMP rumour do confirm 'Was it Chris_i that John confirmed the rumour that t_i speaks French?'
- (24)Adjunct island:
 - a. ✓ John [Chris də chitra.patiya balanna kalin] kema keewae John Chris **də** film before meal ate.E see
 - b. ✓ John [Chris_F chitra.patiya balanna kalin] də kema keewae John Chris film before do meal ate.E see 'Was it Chrisi that John had dinner before ti finished the film?'

PROBLEM 2 for the choice function view of da:

Given the distribution of do, PolQs cannot be reduced to AltQs. Hence, the challenge of $d\partial$ in PolQs is not solved: no intuitive link between $d\partial$ and interrogativity.


² We thank Tharanga Weerasooriya, p.c, for the judgments in this section.

4. PROPOSAL

■ Idea:

We keep the general two-legged strategy (25) in the literature and modify it as in (26): For the upper leg, instead of using a choice function –selecting at a distance–, we will use Kratzerian focus values [].] h which will combine...

- ... not only with the operator Force₀ (for WhQs and for AltQs)
- ... but also with the **squiggle operator** ~ (for AltQs and for PolQs).

■ Three ingredients:

① Kratzerian focus framework

- (Kratzer 1991, Wold 1996, Beck 2006)
- ② Discourse structure and F-marking in PolQ/AltQs (Roberts96, Biezma09, Meertens et al. 2019)
- ③ Our proposed lexical entries

■ INGREDIENT ①: Kratzerian focus framework

- Each expression has an ordinary semantic value [.] and a focus semantic value [.].
- o The Focus feature F is indexed and its index is interpreted via assignment h.
- o Basic lexical entries for English and Functional Application rule:³

b.
$$[John]^h = john$$

(28) a.
$$[John_{F1}] = john$$

b. $[John_{F1}]^h = h(1)$

(29) a.
$$[[leave]] = \lambda x. \lambda w. LEAVE_w(x)$$

b.
$$[[leave]]^h = \lambda x. \lambda w. LEAVE_w(x)$$

(30) a.
$$[John_{F1} left]] = \lambda w. LEAVE_w(j)$$

b.
$$[John_{F1} left]^h = \lambda w. LEAVE_w(h(1))$$

(32) a.
$$[who_{F1}]] = \#$$
 (i.e., undefined)
b. $[who_{F1}]]^h = h(1)$

(33) a. [[leave]] =
$$\lambda x. \lambda w. LEAVE_w(x)$$

b. [[leave]]^h = $\lambda x. \lambda w. LEAVE_w(x)$

(34) a.
$$[[who_1 left]] = \#$$

b. $[[who_1 left]]^h = \lambda w. LEAVE_w(h(1))$

(35) Functional Application:

$$\begin{bmatrix} \mathbf{F} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{F} \end{bmatrix} (\begin{bmatrix} \mathbf{A} \end{bmatrix}) \\
\mathbf{F} \mathbf{A} \end{bmatrix}^{h} = \begin{bmatrix} \mathbf{F} \end{bmatrix}^{h} (\begin{bmatrix} \mathbf{A} \end{bmatrix}^{h})$$

³ More precisely, $\llbracket John_{F1} \rrbracket^h = h(1)$ if $1 \in Dom(1)$ and $\llbracket John_{F1} \rrbracket^h = john$ otherwise (see Beck 2006:fn6). Function h always starts up empty (Beck 2006:14) and grows as operators introduce new mappings (e.g., $\llbracket IP \rrbracket^{hx/i}$ in the text below). This will be relevant later for PolQs.

o Adding the ~-operator and the Force_Q operator:

```
(36)<sup>4</sup> a. [IP \sim C] is defined only if [C] \subseteq \{p: \exists x [p=[IP]]^{hx/i}]\}; if defined, then [IP \sim C] = [IP] b. [IP \sim C]^h = [IP]^h
```

- (37) a. [[Force_{Q,i} IP]] = { $p: \exists x [p=[[IP]]^{hx/i}$ } [To be modified later] b. [[Force_{Q,i} IP]]^h = [[Force_{Q,i} IP]]
- (38) Q: Who left? A: [John_{F1} left] \sim C

(39) $[CP Force_{Q,1} [IP who_1 left]]$

```
(30) \quad b. \ [\![ John_{F1} \ left ]\!]^h = \lambda w. LEAVE_w(h(1))
(40) \quad [\![ [\![ John_{F1} \ left ]\!]^{\sim} C ]\!] = defined \ only \ if
[\![ C ]\!] \subseteq \{p: \exists x [\![ p = [\![ John_{F1} \ left ]\!]^{hx/1} \};
[\![ C ]\!] \subseteq \{p: \exists x [\![ p = \lambda w. LEAVE_w(^{hx/1}(1)) \};
[\![ C ]\!] \subseteq \{p: \exists x [\![ p = \lambda w. LEAVE_w(x) \};
[\![ C ]\!] \subseteq \{\lambda w. LEAVE_w(john),
\lambda w. LEAVE_w(bill),
\lambda w. LEAVE_w(chris), \dots \}
```

```
(34) b. [[who<sub>1</sub> left]]<sup>h</sup> = λw.LEAVE<sub>w</sub>(h(1))

(41) [[Force<sub>Q,1</sub> [who<sub>F1</sub> left]]]

= {p: ∃x [p=[[who<sub>F1</sub> left]]<sup>hx/1</sup>};

= {p: ∃x [p=λw.LEAVE<sub>w</sub>(<sup>hx/1</sup>(1))};

= {p: ∃x [p=λw.LEAVE<sub>w</sub>(x)}

= { λw.LEAVE<sub>w</sub>(john),

λw.LEAVE<sub>w</sub>(bill),

λw.LEAVE<sub>w</sub>(chris), ... }
```

- Building on and modifying this focus framework, we propose the following division of labor for Sinhala:
- i. The **focus feature F** is expressed **prosodically** by focal accent (or it is carried inherently by wh-word). It is modelled via the **Roothian** [].]]^f.
 - ii. The focus index i is carried by the Q-particle. It is modelled via Kratzerian [...]h.

(43) a.
$$[Chitra_F]$$
 = chitra
b. $[Chitra_F]$ ^f = $\{x: x \in D_e\}$

(44) a.
$$[who_F] = \#$$

b. $[who_F]^f = \{x: x \in D_e\}$

$$\begin{array}{lll} \text{(45)} & a. \ [\![XP \ da_i]\!] &= \ [\![XP]\!] \\ & b. \ [\![XP \ da_i]\!]^h &= \lambda w \colon h(1) \in [\![XP]\!]^f. \ h(1) \end{array}$$

Û

Take-home message for Sinhala:

The focus index i carried by the Q-particle will be targeted by **~-operator** and/or by **Force**_O depending on the question type.

⁴ Beck (2006) defines the \sim -operator as an unselective binder, as in (i). Here we have made it select index i, for simplicity. Nothing hinges on this choice. Furthermore, Beck (2006) assumes that \sim resets $[\![.]\!]^h$, as in (ii). We follow Romero (2015) in departing from this assumption.

⁽i) $[IP \sim C]$ is defined only if $[C] \subseteq \{[IP]^{h'}: h' \in H \& h' \text{ is total}\}$; if defined, then $[IP \sim C] = [IP]$

- INGREDIENT ②: Roberts' (1996) discourse framework
 - The structure of a discourse includes a hierarchically ordered set of implicit or explicit moves (questions and answers): (46)
 - o Following moves must be *congruent* with the preceding Question-under-Discussion (QUD): Q/A pairs like (38) and Q...Q sequences like (47)-(48).
 - Congruence is secured by inserting the ~-operator in the corresponding LFs (simplified here from Roberts 1996): (49)-(50)
- (46) 1. 'Who {john,bill} left when {morning,afternoon}?'
 - a. 'Who left in the morning?'
 - i. 'Did John leave in the morning?'
 - ii. 'Did Bill leave in the morning?'
 - b. 'Who left in the afternoon?'
 - i. 'Did John leave in the afternoon?'
 - ii. 'Did Bill leave in the afternoon?'
- (47) a. Who left? ✓ Did JOHN leave?
 - b. Who left? # Did John LEAVE?
- (48) a. Who left? ✓ Did JOHN or BILL leave?
 - b. Who left? # Did John LEAVE or STAY?
- (49) PolQ:
 - a. [Force_O [_{IP} JOHN_{F1} leave]~₁C]
 - b. QUD/[[C]] \subseteq {p: $\exists x[p=[JOHN_{F1} leave]]^{hx/1}}= {\lambda w.LEAVE_w(john), \lambda w.LEAVE_w(bill), \lambda w.LEAVE_w(chris), ...}$
- (50) AltQ:
 - a. [Force_Q [[IP JOHN_{F1} leave]~₁C or [IP Bill_{F1} leave]~₁C]]
 - b. QUD/ $[\![C]\!] \subseteq \{p: \exists x[p=[\![JOHN_{F1}\ leave]\!]^{hx/1}\} = \{\lambda w. LEAVE_w(john), \lambda w. LEAVE_w(bill), \lambda w. LEAVE_w(chris), ...\}$
 - c. QUD/ $[\![C]\!] \subseteq \{p: \exists x[p=[\![BILL_{F1}\ leave]\!]^{hx/1}\} = \{\lambda w.LEAVE_w(john), \lambda w.LEAVE_w(bill), \lambda w.LEAVE_w(chris), \dots\}$

Û

Take-home message for Sinhala:

In PolQs and AltQs, the ~ operator will target the focus index i carried by the Q-particle.

û ûû

This circumvents problems 1 and 2 of the choice function view:

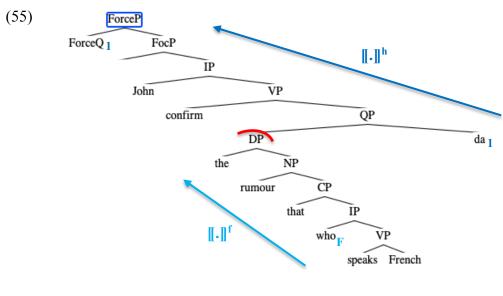
- 1. In AltQs, one occurrence of *do* per disjunct, since each disjunct must check discourse congruence via its ~-operator
- 2. In PolQs, $d\partial$ does not serve ForceQ but just ~-operator, so no relation between XP- $d\partial$ and interrogativity or answer choices.

- INGREDIENT ③: Our proposed lexical entries⁵
- (51) The operator Force_{Q,i} for WhQs and AltQs:

```
a. [[Force_{Q,i_1...j_n} IP]] = \lambda p: p \in [IP] if [[IP]] is defined. \exists x_1,...,y_n [p = [IP]]^{hx/i...y/n}] b. [[Force_{Q,i_1...i_n} IP]]^h = [Force_{Q,i_1...i_n} IP]
```

- (52) The operator Forceo for PolQs:
 - a. [[Force_Q IP]] = $\lambda p. p = [[IP]]^h$ b. [[Force_Q IP]]^h = [[Force_{Q,i 1...i n} IP]]
- (53) The squiggle operator ~: (=36)
 - a. $[IP \sim C]$ is defined only if $[C] \subseteq \{p: \exists x [p=[IP]]^{hx/i}]\}$; if defined, then $[IP \sim C] = [IP]$
 - b. $\llbracket IP \sim C \rrbracket^h = \llbracket IP \rrbracket^h$
- (54) Disjunction *or*:
 - a. [IP1 or IP2]] = { [IP1], [IP2]} } (Alonso-Ovalle 2006, a.o.) b. [IP1 or IP2]]^h = [IP1]]^h \cup [IP2]]^h

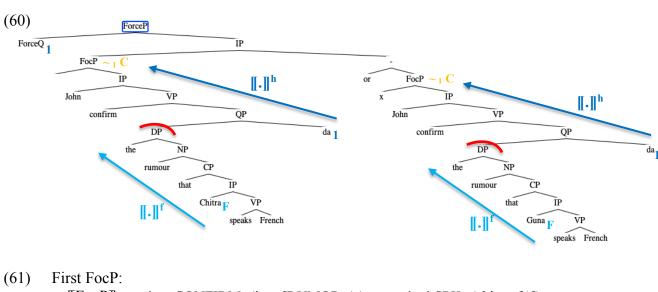
Û


Take-home message for Sinhala:

In WhQs and AltQs, Force₀ will target the focus index i carried by the Q-particle.

-

⁵ Force_{Q,i} for WhQs and AltQs and Force_Q for PolQs are not unified into a single lexical entry at this point (though note that the blue parts can be easily unified). We leave this for future work.


■ Sample derivation of **WhQ** with island in Sinhala:


```
(56)
           a. [DP]
           b. [DP]^f = {\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPEAK_w'(chitra, french)]}
                                    \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPEAK_{w'}(guna, french)],
                                    \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPEAK_w'(ali, french)], ...
(57)
           a. [DP da_1] = \#
           b. \|DP da_1\|^h = \lambda w: h(1) \in \|DP\|^f. h(1)
                                = \lambda w: h(1) \in \{\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)] . h(1)
                                                       \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(guna, fr)],
                                                       \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(ali, fr)],...
(58)
           a. [FocP]
           b. \llbracket FocP \rrbracket^h = \lambda w: h(1) \in \llbracket DP \rrbracket^f. CONFIRM_w(j,h(1))
                                = \lambda w: h(1) \in \{\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)] . CONFIRM_w(j,h(1))
                                                     \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(guna, fr)],
                                                     \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(ali, fr)],...
(59)
           [Force<sub>0,1</sub> FocP]
           = \lambda p: p \in [FocP] if [FocP] is defined. \exists x [p = [FocP]]^{hx/1}
           = \lambda p. \exists x [p = [FocP]^{hx/1}]
           =\lambda p. \exists x [p = \lambda w: h^{x/1}(1) \in \{\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w(chitra, fr)]. CONF_w(j, h^{x/1}(1))]
                                                         \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)],
                                                         \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(ali, fr)],...
           =\lambda p. \exists x [p = \lambda w: x \in \{\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'. SPK_w'(chitra, fr)] . CONF_w(j,x)]
                                                   \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)],
                                                   \lambda w. \ \iota q \ [RUMOR_w(q) \land \ q = \lambda w \text{'.SPK}_{w'}(ali, \ fr)], \ldots \}
           = { \lambda w. CONFIRM<sub>w</sub>(j, \iota q [RUMOR<sub>w</sub>(q) \wedge q = \lambda w'.SPK<sub>w</sub>'(chitra, french)]),
                   \lambda w. CONFIRM<sub>w</sub> (j, \iota q [RUMOR<sub>w</sub>(q) \wedge q = \lambda w'.SPK<sub>w</sub>'(guna, french)]),
```

 λw . CONFIRM_w (j, ιq [RUMOR_w(q) \wedge q = λw '.SPK_w'(ali, french)]), ...}

■ Sample derivation of an **AltQ** with island in Sinhala:


```
(61) First FocP:

a. [[FocP]] = \lambdaw. CONFIRM<sub>w</sub>(j, \iotaq [RUMOR<sub>w</sub>(q) \wedge q = \lambdaw'.SPK<sub>w'</sub>(chitra, fr)])

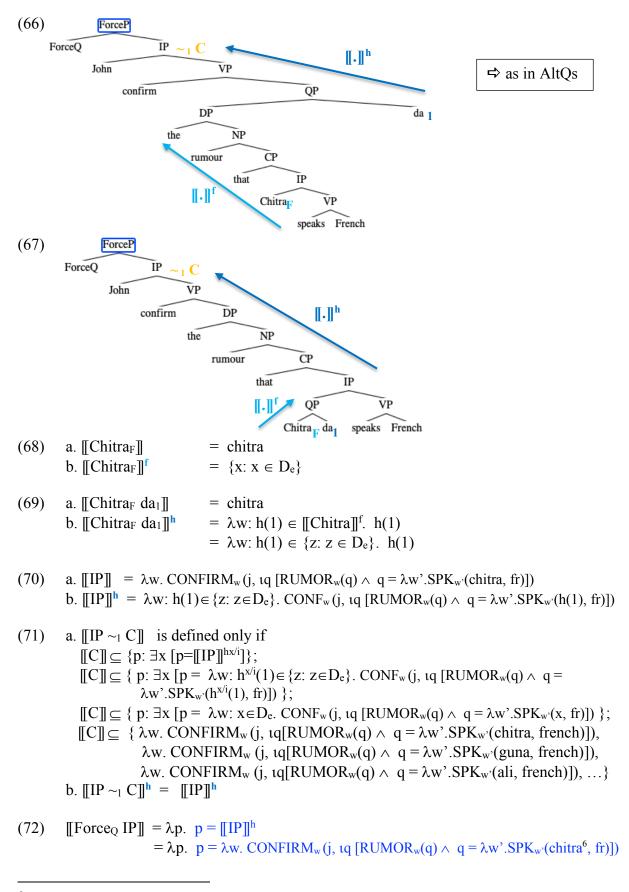
b. [[FocP]]<sup>h</sup> = \lambdaw: h(1) \in [[DP]]<sup>f</sup>. CONFIRM<sub>w</sub>(j,h(1))

= \lambdaw: h(1) \in {\lambdaw. \iotaq [RUMOR<sub>w</sub>(q) \wedge q = \lambdaw'.SPK<sub>w'</sub>(chitra, fr)]. CONFIRM<sub>w</sub>(j,h(1))

\lambdaw. \iotaq [RUMOR<sub>w</sub>(q) \wedge q = \lambdaw'.SPK<sub>w'</sub>(guna, fr)],

\lambdaw. \iotaq [RUMOR<sub>w</sub>(q) \wedge q = \lambdaw'.SPK<sub>w'</sub>(ali, fr)],...}
```

(62) Second FocP:


$$\begin{array}{l} a. \; \llbracket FocP \rrbracket \;\; = \; \lambda w. \; CONFIRM_w \left(j, \, \iota q \; \llbracket RUMOR_w (q) \wedge \; q = \lambda w'. SPK_{w'} (guna, \, fr) \rrbracket \right) \\ b. \; \llbracket FocP \rrbracket^h \;\; = \; \lambda w: \; h(1) \in \; \llbracket DP \rrbracket^f. \;\; CONFIRM_w (j,h(1)) \\ \;\; = \; \lambda w: \; h(1) \in \; \{\lambda w. \; \iota q \; \llbracket RUMOR_w (q) \wedge \; q = \lambda w'. SPK_{w'} (chitra, \, fr) \rrbracket \;\; . \;\; CONFIRM_w (j,h(1)) \\ \;\; \lambda w. \; \iota q \; \llbracket RUMOR_w (q) \wedge \; q = \lambda w'. SPK_{w'} (guna, \, fr) \rrbracket, \\ \;\; \lambda w. \; \iota q \; \llbracket RUMOR_w (q) \wedge \; q = \lambda w'. SPK_{w'} (ali, \, fr) \rrbracket, \ldots \} \end{array}$$

(63) a. [[FocP \sim_1 C]] is defined only if $[[C]] \subseteq \{p: \exists x [p=[IP]]^{hx/i}]\}, \text{ i.e.,}$ [[C]] $\subseteq \{ \lambda w. \text{ CONFIRM}_w(j, \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{chitra, fr})]), \lambda w. \text{ CONFIRM}_w(j, \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{guna, fr})]), \lambda w. \text{ CONFIRM}_w(j, \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{ali, fr})]), \dots \}$ b. [[FocP \sim_1 C]] h $= \lambda w: h(1) \in [[DP]]^f. \text{ CONFIRM}_w(j,h(1))$ $= \lambda w: h(1) \in \{\lambda w. \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{chitra, fr})] . \text{ CONFIRM}_w(j,h(1))$ $\lambda w. \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{guna, fr})],$ $\lambda w. \iota q [\text{RUMOR}_w(q) \land q = \lambda w'. \text{SPK}_w'(\text{ali, fr})], \dots \}$

(64) a. [[FocP or FocP]] = { [[FocP]], [[FocP]]}
= {
$$\lambda w$$
. CONFIRM_w(j, ιq [RUMOR_w(q) \wedge q = λw '.SPK_w'(chitra, fr)]), λw . CONFIRM_w(j, ιq [RUMOR_w(q) \wedge q = λw '.SPK_w'(guna, fr)]) }
b. [[FocP or FocP]]^h = [[FocP]]^h \cup [[FocP]]^h = [λw : h(1) \in [[DP]]^f. CONFIRM_w(j,h(1))] \cup [λw : h(1) \in [[DP]]^f. CONFIRM_w(j,h(1))] = λw : h(1) \in [[DP]]^f. CONFIRM_w(j,h(1)) = (61.b) = (62.b)

```
(65)
           [Force<sub>0.1</sub> [FocP or FocP]]
           = \lambda p: p \in [FocP \text{ or } FocP] if [FocP \text{ or } FocP] is defined. \exists x [p = [FocP \text{ or } FocP]]^{hx/1}]
           = \lambda p: p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)]),
                           \lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)])
                    \exists x [p=[FocP or FocP]^{hx/1}]
           = \lambda p: p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)]),.
                           \lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)])
                    \exists x [p = \lambda w: h^{x/1}(1) \in [DP]^f. CONFIRM_w(j,h^{x/1}(1))]
           = \lambda p: p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)]),
                           \lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(guna, fr)])
                    \exists x [p = \lambda w: x \in [DP]^f. CONFIRM_w(j,x)]
           = \lambda p: p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)]), ...
                           \lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)])
                    \exists x [p = \lambda w: x \in \{\lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)] . CONFIRM_w(j,x)]
                                              \lambda w. \iota q [RUMOR_w(q) \wedge q = \lambda w'.SPK_{w'}(guna, fr)],
                                              \lambda w. \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(ali, fr)],...
           = \lambda p: p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_w'(chitra, fr)]), ...
                           \lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)])
                     p \in \{\lambda w. CONFIRM_w(j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(chitra, fr)]),\}
                            \lambda w. CONFIRM_w (j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(guna, fr)]),
                            \lambda w. CONFIRM_w (j, \iota q [RUMOR_w(q) \land q = \lambda w'.SPK_{w'}(ali, fr)]), ... \}
```

■ Sample derivation of a **PolQ** with island in Sinhala:

⁶ See footnote 3.

5. CONCLUSIONS AND OUTLOOK

- In a prominent line of work (Hagstrom 1998, Cable 2010, Slade 2011), Q-particles like Sinhala də have been analyzed as introducing a choice function that mediates between the Roothian focus value [.] f and the Force operator.
- This line of work has been shown to face (at least) two problems:
 - \circ For AltQs, there is no rationale for the multiple use of $d\partial$ when we are intuitively choosing only once.
 - o In PolQs, do is intuitively not choosing from the focus value [.]] of its syntactic sister. Trying to reduce PolQs to partially elided AltQs to avoide this problem fails to account for the asymmetric distribution of do in the two question types.
- A new analysis has tentatively been proposed whereby the Q-particles d > 0 mediates between two focus percolation systems: Roothian focus value [[.]]^f and Kratzerian focus value [[.]]^h. The Kratzerian focus value [[.]]^h will serve not only the Force_Q operator (in WhQs and AltQs) but also the ~-operator (in AltQs and PolQs).
- This new analysis circumvents the two problems faced by the choice function view:
 - o In AltQs, two *də* particles are present because we check congruence with the previous discourse via the ~-operator twice, once per disjunct.
 - o In PolQs, do does not link to ForceQ (hence, no link to interrogativity or choice of answer) but just to the ~-operator for discourse congruence.

■ For the future:

- Extension to Q-particles in so-called Q-adjunction languages like Japanese and Korean.
- \circ Comparison of $d\partial$ in questions with $d\partial$ with indefinites.

REFERENCES

- Beck, S. 2006. Intervention effects follow from focus interpretation, *Natural Language Semantics* 14(1): 1–56.
- Biezma, M. 2009. Alternative vs polar questions: The cornering effect. In E. Cormany, S. Ito, and D. Lutz (Eds.), *Proceedings of Semantics and Linguistic Theory* (SALT) 19, pp. 37–54.
- Cable, S. 2010. The grammar of Q. Q-particles, wh-movement and pied-piping. Oxford: OUP. Gair, I. W. 1983. Non-configurationality, movement, and Sinhala focus. Paper presented at
- Gair, J. W. 1983. Non-configurationality, movement, and Sinhala focus. Paper presented at the Linguistic Association of Great Britain, Newcastle.
- Hagstrom, P. 1998. Decomposing questions. Cambridge, MA: MIT dissertation.
- Kishimoto, H. 2005. Wh-in-situ and movement in Sinhala questions, *Natural Language and Linguistic Theory* 23(1): 1–51.
- Kratzer, A. 1991. The representation of focus. In A. von Stechow and D. Wunderlich, eds., *Semantics: An international handbook of contemporary research*. New York: Walter de Gruyter.
- Meertens, E., S. Egger, and M. Romero. 2019. Multiple accent in alternative questions. In M. Espinal, E. Castroviejo, M. Leonetti, L. McNally, and C. Real-Puigdollers (Eds.), *Proceedings of Sinn und Bedeutung*, Volume 2, pp. 179–196.
- Roberts, C. (1996/2012). Information structure in discourse: Towards an integrated formal theory of pragmatics, *Semantics and Pragmatics* 5 (6): 1-69.
- Romero, M. 2015. *Surprise*-predicates, strong exhaustivity and alternative questions. In S. D'Antonio, M. Morroney and C.R. Little (eds.), *Proceedings of Semantics and Linguistic Theory 25*. ISSN: 2163-5951. Pp. 225–245.
- Rooth, M. 1992. A theory of focus interpretation, *Natural Language Semantics* 1, 75–116.
- Slade, B. 2011. Formal and philological inquiries into the nature of interrogatives, indefinites, disjunction, and focus in Sinhala and other languages. Ph.D. thesis, University of Illinois at Urbana-Champaign.
- Weerasooriya, T. 2019. *Positive polarity and exhaustive in Sinhala: A study of its implications for grammar*. Ph.D. thesis, University of Ottawa.
- Wold, D. 1996. Long distance selective binding: the case of focus. In T. Galloway & J. Spence, eds., *Proceedings from Semantics and Linguistic Theory (SALT)* 6, 311–328. Ithaca, NY: CLC Publications, Cornell University.