
Enhancing Translation Memories with Semantic KnowledgeEnhancing Translation Memories with Semantic Knowledge

Natalia Elita
Technical University of Moldova

Informatics and Applied Modern Languages
Department

Republic of Moldova
E-mail: vnatalia@mail.md

Monica Gavrila
University of Hamburg

Natural Language Systems Division
Germany

E-mail: gavrila@nats.informatik.uni-
hamburg.de

The translation process can often be time-consuming, boring, and difficult. Translators
need assistance for a faster, more qualitative, and accurate translation. Translation Memories
(TMs) are tools that help them in doing this job that is not an easy one. In our paper, we
present a new approach for building Translation Memories enhanced with semantic
information.

The paper is structured in five sections, as follows: The first section includes
theoretical considerations, mainly why are TMs used, and the TMs types. Section 2 describes
our motivation. The Semantic Template Driven Method is described in more details in Section
3. Some preliminary evaluation results are given in the next section. In Section 5, further work
and conclusions are presented.

 1. Theoretical Considerations

The Translation Memory (TM) is a type of database that is used in programs
designed to aid human translators. It is used together with word processing programs,
terminology management systems, and multilingual dictionaries. A TM consists of text
segments (e.g. blocks, paragraphs, sentences, phrases) in the source language (SL), and their
translations into one or more target languages (TL).

TMs are used to allow translators increase their productivity by making easy for them
to recycle parts of their translation. They guarantee a certain level of quality, as they recycle
translations done by humans, and they allow non-negligible productivity gains, particularly on
highly repetitive texts.

Three types of TMs are known: first, second, and third generation TMs.
First generation TMs are distinguished by the fact that they store pairs of complete

sentences. Repetitions are searched on the level of a full sentence. The biggest problem of
these TMs is that repetitions on the whole sentences rarely occur.

Second generation TMs appeared to overcome this big disadvantage of the first
generation TMs. In this new TMs the two source sentences (the input and the example in the
database) are considered to be identical if they differ slightly (with regard to name entities or
edit distance operations). The concept of fuzzy matching was introduced together with this
type of TMs. This also did not prove to be very effective. This is why third generation TMs
appeared. They already give the possibility to search for repetitions on a sub-sentential level.

More details on TMs can be found in [1],[2], and [7].

2. Motivation

Our motivation comes with the following possible scenario: suppose we have a
translator who wants to build a translation memory from the different translations he has
already done. The resulting TM would consist of translation templates with variables that have

to be instantiated. We propose a method of building such a translation memory. Our approach
has the following advantage: the presence of semantic information in the templates makes
possible word sense disambiguation, which can prevent learning false templates. We intend to
integrate the given approach also in an Example-based Machine Translation (EBMT) system1.

3. Semantic Template Driven Method

In this section we give a detailed description of the needed resources, and of the
template extraction algorithm.

In order to be able to extract semantic templates we need several resources and
modules, such as a corpus of SL texts with their translations, a template extraction engine, a
bilingual lexicon (semi) automatically derived from corpus, and some domain ontology. A
short overview of these resources is made in the following sub-section.

3.1. Resources

In our work, we have several requirements towards the corpus. The languages
involved are Romanian, Russian, English and German. Sentences are 1:1 aligned, and are exact
translations of each other.

Another resource to be used is the bilingual lexicon. It is obtained via word-aligned
SL and TL texts.

The domain ontology plays an important role, as the lexical entries from the bilingual
lexicon are mapped on ontology concepts, and the corpus is annotated (semi-automatically)
with concepts in the lexicon.

3.2 The Template Extraction Engine

The Template Extraction Engine implements a several phase algorithm.
In the first phase we use the template extraction algorithm proposed by McTait [6].

This algorithm is claimed to be language – independent. Our first step includes also testing this
claim.

Before the algorithm description, we introduce the notion of translation template.
Translation templates (TT) are generalizations of sentences that are translations of each
other, where sequences of one or more words are replaced by variables, with alignments
between the resulting word sequences, and/or variables made explicit. They are extracted from
a bilingual corpus aligned at the level of sentence by a language neutral, recursive machine-
learning algorithm. The algorithm is based on the principle of similar distributions of strings:
source language (SL) and target language (TL) strings that co-occur in two (or more)
sentence pairs of a bilingual corpus are likely to be translations of each other. TTs are formed
from lexical items that occur minimum twice in the corpus, which means that the algorithm is
useful in instances of sparse data.

Defined formally, a TT is a 4–tuple {S, T, Af, Av}, where S is the sequence of SL
sub-sentential text fragments, separated by SL variables, T the sequence of TL sub-sentential
text fragments, separated by TL variables, Af the global alignment of text fragments between
S and T, and Av the global alignment of variables. A possible configuration of S and T is:

T
q

T
q

TTTT
1

S
p

S
p

SSSS V,FV,F,V,FV,FV,F,V,F 2212211 >−<
An informal example of a TT is:

1 More details on EBMT systems, and template extraction can be found in [3],[4], and [5].

<en>X gave Y up</en> <-> <ro>X a renuntat la Y</ro>
As the algorithm operates on the surface forms of lexical entries, there are great

chances that false templates can be learned. For example, from the following two sentences in
English, and their translations in Romanian:

1. The artist played wonderfully yesterday, at Music Hall (En) <-> Artistul a cintat
minunat ieri la Sala de Muzica (Ro),

2. Stevenson played for a new team yesterday, in the Central stadium (En) <->
Stevenson a jucat pentru o echipa noua ieri la stadionul central (Ro),
the template X played Y yesterday Z can be learned2. It is false, because the English word
“played” has different translation equivalents in Romanian. We propose as a solution to the
false template problem the usage of semantic constraints (i.e concepts from ontology). This
way, for the above-mentioned example, the following 2 semantic templates can be extracted:

1. X (C002_music) played Y yesterday Z
2. X (C070_sport) played Y yesterday Z

The input to the template extraction engine is a bilingual corpus aligned at the sentence
level, the output is a set of translation templates. The algorithm tends to be language-neutral,
and it operates on simple principles of string co-occurrence, and frequency thresholds.
Template extraction is divided into three stages: monolingual, bilingual, and alignment.

The fist stage is a Monolingual Phase and it consists of SL (TL) Tokenisation, SL (TL)
Word List Creation, and SL (TL) Collocation Tree Formation. All these three steps are
detailed below.

Tokenisation is the process of dividing a string into tokens.
Word List Creation is the next step, where from the list of tokens obtained in the

previous step the list of words is created as in the following example. From the sample corpus
entries:

(1) The commission gave the plan up (En) <-> Comisia a renuntat la plan (Ro);
(2) Our government gave all laws up (En) <-> Guvernul nostru a renuntat la toate legile

(Ro);
the lexical items occurring in two or more SL and TL sentences are collected. As a result the
following output at this stage is produced:

(gave)[1,2], (up) [1,2], (a)[1,2], (renuntat)[1,2], (la) [1,2].
Here the integers denote the sentences from which they were retrieved.

The Collocation Tree Formation is the next phase. A collocation in our case is a data
structure representing (possibly discontinuous) strings that co-occur in two or more sentences.

Lexical items combine recursively to form a tree-like data structure of collocations.
Each lexical item is tested to see whether it can combine with any daughters of the root node,
and if so, recursively with each subsequent daughter (and the daughters of that node and so
on), as long as there is an intersection of at least two sentence IDs.

The combination process is constrained only by the integer IDs of the sentences from
which the lexical items were retrieved, and the frequency threshold (a minimum of 2). The
intersection constraint enforces string co-occurrence in two or more sentences.

If the node to be added cannot combine with any daughter of the root (or parent)
node, it is added as a new daughter of the root (or parent) node. Consider the following
example: given the word list: (gave)[1,2], (up) [1,2] a collocation tree as in Figure 1 can be
built.

 The collocation trees are not always so simple. For a given List of Words with their
sentence ids: {(government)[1,2,3,4], (implemented)[2,3,4], (plan)[3,4], (policy)[2,3],

2 The templates are learned if the minimum occurrences threshold is reached.

(decided)[1,2], (committee)[5,6,7]} a tree of collocations of increasing length, but decreasing
frequency is formed, as the tree is descended from the root node to the leaves3.

Figure 1. Collocation tree for the word list (gave)[1,2], (up) [1,2]

The leaves become the most informative parts of the tree and are collected at the end
of this phase. The leaf-collocations are filtered so, that only the longest are selected. In our
experiments we encountered several problems, for which we have to find solutions. For
example useful information can be lost, the sequences extracted in SL and TL with the same
sentence ID are often not translations of each other, etc. Collocations that are subsumed by
other collocations with the same sentence IDs are removed.

The next phase is the Bilingual Phase. The filtered SL and TL leaf-node collocations
extracted in the monolingual phase are equated on the basis of simple co-occurrence criteria.
According to McTait [6] the used criterion is: SL and TL collocations that share exactly the
same sentence ids are equated. Sometimes, in practice, the usage of this criterion can lead to
losing some of the templates.

The correct orthography or the order of the lexical items and discontinuities that make
up a translation template is computed by scanning the sentences from which the lexical items
were retrieved. Sometimes there are several possibilities to choose the sentences from which
the order is retrieved. A solution is to pick up the one that gives you the minimum number of
discontinuities, but in some (test) cases this might not be the perfect solution.

Having the collocation trees for both languages, the text fragments and variables need
to be aligned (the Alignment of Text Fragments and Variables Phase). This produces
translation templates that are flexible enough for the recombination phase when used in MT,
where TL translations are produced. As a result a bilingual lexicon of phrasal translations is
obtained.

First, templates are extracted without any semantic information, following the above-
mentioned algorithm. In the next phase, after the extracted templates are carefully examined,
semantic concepts are attached the lexicon entries, and the original corpus is annotated with
the extracted concepts. Then, the following phase of template extraction is run. This phase is
similar to the first one, but the concepts are considered. This way, the output is not made of
simple templates, but of templates enhanced with semantic information.

4. Preliminary Evaluation

The results of our preliminary evaluation are included in table 1.

3 Examples taken from McTait [6].

(gave)[1,2]

(gave)(up)[1,2]

No Data Threshold Templates learned Comments
*useful **less

useful
1 sentences: 56

words: 478
templates: 112

2 45 67 News items in English

2 sentences: 56
words: 478
templates: 40

3 21 19 News items in English
LOST 15 useful templates,
ADDED 1 new template

(compared to experiment 1)
3 sentences: 56

words: 478
templates: 17

4 4 13 News items in English
LOST 3 useful templates

compared to (2),
LOST 16 useful templates

compared to (2),
4 sentences: 162

words: 2811
templates:123

2 64 59 News items in English

5 sentences: 162
words: 2409
templates: 113

2 39 74 News items in Romanian

6 sentences: 214
words: 3667
templates: 68

2 31 37 News items in Romanian

Table 1. Preliminary evaluation

We consider *useful to be contiguous or non-contiguous text fragments containing at
least one content word and **less useful the extracted sentence fragments containing only
functional words. The threshold is the minimum number of sentences the lexical item has to
occur. We made several experiments with different number of tokens, and came to the
conclusion that the maximum number of templates is learned when the threshold is 2. Another
observation made is that for the same number of sentences in different languages, a different
number of templates is learned. Of course, in some point of our experiments we have to
calculate the precision and the recall. As we are at the beginning of our work, this is still not
possible.

5. Further Work and Conclusions

The work is very much under development, so we are just in the first phase of the
project. Further we intend to improve the monolingual phase, implement the bilingual and
alignment phase of the template extraction mechanism. Then, as soon as this is done, after
careful analysis of the extracted templates, we will create the necessary ontology. More tests
have to be done, in order to be able to calculate the Precision and Recall.

In this paper we presented a new methodology for TM creation enhanced with
semantic information. It can be useful in automatic word sense disambiguation. It prevents

learning false templates, and tends to be language–neutral. In the end it will be integrated also
in an EBMT system.

References

[1] J. Allen, “Adapting the concept of ‘Translation memory’ to ‘Authoring memory’ for a
Controlled Language writing environment”, Translating and Computer Conference, London,
1999

[2] H. Gabor, G. Tamas, K. Balazc, “Translation memory as a Robust Example-based
Translation System”, in EAMT (2004), pp.82-89, 2004

[3] F. Gotti, P. Langlais, E. Macklovitch, D. Bourigault, B. Robichaud, C. Coulombe “3GTM:
A Third Generation Translation Memory” in 3rd Computational Linguistics in the North-East
(CLiNE) Workshop, Gatineau, Québec, aug 2005

[4] H. Güvenir, I. Cicekli: “Learning translation templates from examples”, Information
Systems 23, pp. 353-363, 1998.

[5] H. Kaji, Y. Kida, Y. Morimoto: “Learning translation templates from bilingual text” in
Coling, pp. 672-678, 1992.

[6] K. McTait, “Translation Patterns, Linguistic Knowledge and Complexity in an Approach to
EBMT” in M. Carl, A. Way (eds), Recent advances in Example-based Machine Translation,
Kluwer Acad. Publ. pp. 307-338, 2003

[7] R. Schäler “Beyond Translation Memories” Workshop on EBMT, MT Summit, VIII,
September 2001.

