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The translation process can often be time-consuming, boring, and difficult. Translators 
need assistance for a faster, more qualitative, and accurate translation. Translation Memories 
(TMs) are tools that help them in doing this job that is not an easy one. In our paper, we 
present  a  new  approach  for  building  Translation  Memories  enhanced  with  semantic 
information. 

The  paper  is  structured  in  five  sections,  as  follows:  The  first section  includes 
theoretical considerations, mainly why are TMs used, and the TMs types. Section 2 describes 
our motivation. The Semantic Template Driven Method is described in more details in Section 
3. Some preliminary evaluation results are given in the next section. In Section 5, further work 
and conclusions are presented.

 1.  Theoretical Considerations

The  Translation  Memory  (TM)  is a  type  of  database  that  is  used  in programs 
designed  to  aid  human  translators.  It  is  used  together  with  word  processing  programs, 
terminology  management  systems,  and  multilingual  dictionaries.  A  TM  consists  of  text 
segments (e.g. blocks, paragraphs, sentences, phrases) in the source language (SL), and their 
translations into one or more target languages (TL).  

TMs are used to allow translators increase their productivity by making easy for them 
to recycle parts of their translation. They guarantee a certain level of quality, as they recycle 
translations done by humans, and they allow non-negligible productivity gains, particularly on 
highly repetitive texts.

Three types of TMs are known: first, second, and third generation TMs.   
First generation TMs are distinguished by the fact that  they store pairs of complete 

sentences. Repetitions are searched on the level of a full sentence. The biggest problem of 
these TMs is that repetitions on the whole sentences rarely occur.

Second  generation  TMs  appeared  to  overcome  this  big  disadvantage  of  the  first 
generation TMs. In this new TMs the two source sentences (the input and the example in the 
database) are considered to be identical if they differ slightly (with regard to name entities or 
edit distance operations). The concept of fuzzy matching was introduced together with this 
type of TMs. This also did not prove to be very effective. This is why third generation TMs 
appeared. They already give the possibility to search for repetitions on a sub-sentential level.

More details on TMs can be found in [1],[2], and [7].

2. Motivation

Our  motivation  comes  with  the  following possible scenario:  suppose  we  have  a 
translator  who wants  to  build a  translation memory from the  different  translations he has 
already done. The resulting TM would consist of translation templates with variables that have 



to be instantiated. We propose a method of building such a translation memory. Our approach 
has the following advantage:  the presence of semantic information in the templates makes 
possible word sense disambiguation, which can prevent learning false templates. We intend to 
integrate the given approach also in an Example-based Machine Translation (EBMT) system1. 

3. Semantic Template Driven Method

In this section we give a detailed description of the needed resources,  and of the 
template extraction algorithm.

In order  to  be able to  extract  semantic templates we need several resources  and 
modules, such as a corpus of SL texts with their translations, a template extraction engine, a 
bilingual lexicon (semi) automatically derived from corpus,  and some domain ontology. A 
short overview of these resources is made in the following sub-section.

3.1. Resources

In  our  work,  we  have  several  requirements  towards  the  corpus.  The  languages 
involved are Romanian, Russian, English and German. Sentences are 1:1 aligned, and are exact 
translations of each other.

Another resource to be used is the bilingual lexicon. It is obtained via word-aligned 
SL and TL texts.     

The domain ontology plays an important role, as the lexical entries from the bilingual 
lexicon are mapped on ontology concepts, and the corpus is annotated (semi-automatically) 
with concepts in the lexicon. 

3.2 The Template Extraction Engine

The Template Extraction Engine implements a several phase algorithm.
In the first phase we use the template extraction algorithm proposed by McTait [6]. 

This algorithm is claimed to be language – independent. Our first step includes also testing this 
claim.

Before the algorithm description,  we introduce  the notion of translation template. 
Translation templates (TT)  are  generalizations of sentences that  are  translations of each 
other,  where sequences of one or  more words  are  replaced by variables, with alignments 
between the resulting word sequences, and/or variables made explicit. They are extracted from 
a bilingual corpus aligned at the level of sentence by a language neutral, recursive machine-
learning algorithm. The algorithm is based on the principle of similar distributions of strings: 
source  language  (SL)  and  target  language  (TL)  strings  that  co-occur  in  two  (or  more) 
sentence pairs of a bilingual corpus are likely to be translations of each other. TTs are formed 
from lexical items that occur minimum twice in the corpus, which means that the algorithm is 
useful in instances of sparse data. 

Defined formally, a TT is a 4–tuple  {S, T, Af, Av}, where S is the sequence of SL 
sub-sentential text fragments, separated by SL variables, T the sequence of TL sub-sentential 
text fragments, separated by TL variables, Af the global alignment of text fragments between 
S and T, and Av the global alignment of variables. A possible configuration of S and T is: 
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An informal example of a TT is: 

1  More details on EBMT systems, and template extraction can be found in [3],[4], and [5].



<en>X gave Y up</en> <-> <ro>X a renuntat la Y</ro>
As the algorithm operates  on the surface forms of lexical entries,  there  are great 

chances that false templates can be learned. For example, from the following two sentences in 
English, and their translations in Romanian:  

1. The artist  played wonderfully yesterday, at Music Hall (En) <-> Artistul  a cintat  
minunat ieri la Sala de Muzica (Ro),

2.  Stevenson  played for  a  new team yesterday,  in  the Central  stadium  (En)  <-> 
Stevenson a jucat pentru o echipa noua ieri la stadionul central (Ro),
the template  X played Y yesterday Z can be learned2. It is false, because the English word 
“played” has different translation equivalents in Romanian. We propose as a solution to  the 
false template problem the usage of semantic constraints (i.e concepts from ontology). This 
way, for the above-mentioned example, the following 2 semantic templates can be extracted:

1. X (C002_music) played Y yesterday Z
2. X (C070_sport) played Y yesterday Z

The input to the template extraction engine is a bilingual corpus aligned at the sentence 
level, the output is a set of translation templates. The algorithm tends to be language-neutral, 
and  it  operates  on  simple  principles  of  string  co-occurrence,  and  frequency  thresholds. 
Template extraction is divided into three stages: monolingual, bilingual, and alignment. 

The fist stage is a Monolingual Phase and it consists of SL (TL) Tokenisation, SL (TL) 
Word  List  Creation,  and  SL (TL)  Collocation  Tree  Formation.  All these  three  steps  are 
detailed below.

Tokenisation is the process of dividing a string into tokens. 
Word List Creation is the next step,  where from the list of tokens obtained in the 

previous step the list of words is created as in the following example. From the sample corpus 
entries: 

(1) The commission gave the plan up (En) <-> Comisia a renuntat la plan (Ro);
(2) Our government gave all laws up (En) <-> Guvernul nostru  a renuntat la toate legile 

(Ro);
the lexical items occurring in two or more SL and TL sentences are collected. As a result the 
following output at this stage is produced: 

(gave)[1,2], (up) [1,2], (a)[1,2], (renuntat)[1,2], (la) [1,2]. 
Here the integers denote the sentences from which they were retrieved.

The Collocation Tree Formation is the next phase. A collocation in our case is a data 
structure representing (possibly discontinuous) strings that co-occur in two or more sentences.

Lexical items combine recursively to form a tree-like data structure of collocations. 
Each lexical item is tested to see whether it can combine with any daughters of the root node, 
and if so, recursively with each subsequent daughter (and the daughters of that node and so 
on), as long as there is an intersection of at least two sentence IDs.  

The combination process is constrained only by the integer IDs of the sentences from 
which the lexical items were retrieved, and the frequency threshold (a minimum of 2).  The 
intersection constraint enforces string co-occurrence in two or more sentences.

If the node to  be added cannot combine with any daughter of the root  (or parent) 
node,  it  is added as a new daughter  of the root  (or  parent)  node.  Consider the following 
example: given the word list: (gave)[1,2], (up) [1,2] a collocation tree as in Figure 1 can be 
built.

 The collocation trees are not always so simple. For a given List of Words with their 
sentence  ids:  {(government)[1,2,3,4],  (implemented)[2,3,4],  (plan)[3,4],  (policy)[2,3], 

2  The templates are learned if the minimum occurrences threshold is reached. 



(decided)[1,2], (committee)[5,6,7]} a tree of collocations of increasing length, but decreasing 
frequency is formed, as the tree is descended from the root node to the leaves3.

Figure 1. Collocation tree for the word list (gave)[1,2], (up) [1,2] 

The leaves become the most informative parts of the tree and are collected at the end 
of this phase. The leaf-collocations are filtered so, that only the longest are selected. In our 
experiments  we  encountered  several  problems,  for  which we  have  to  find solutions.  For 
example useful information can be lost, the sequences extracted in SL and TL with the same 
sentence ID are often not translations of each other, etc.  Collocations that are subsumed by 
other collocations with the same sentence IDs are removed.  

The next phase is the Bilingual Phase. The filtered SL and TL leaf-node collocations 
extracted in the monolingual phase are equated on the basis of simple co-occurrence criteria. 
According to McTait [6] the used criterion is: SL and TL collocations that share exactly the 
same sentence ids are equated. Sometimes, in practice, the usage of this criterion can lead to 
losing some of the templates.

The correct orthography or the order of the lexical items and discontinuities that make 
up a translation template is computed by scanning the sentences from which the lexical items 
were retrieved. Sometimes there are several possibilities to choose the sentences from which 
the order is retrieved. A solution is to pick up the one that gives you the minimum number of 
discontinuities, but in some (test) cases this might not be the perfect solution.

Having the collocation trees for both languages, the text fragments and variables need 
to  be  aligned  (the  Alignment  of  Text  Fragments  and  Variables  Phase).  This  produces 
translation templates that are flexible enough for the recombination phase when used in MT, 
where TL translations are produced. As a result a bilingual lexicon of phrasal translations is 
obtained.

First, templates are extracted without any semantic information, following the above-
mentioned algorithm. In the next phase, after the extracted templates are carefully examined, 
semantic concepts are attached the lexicon entries, and the original corpus is annotated with 
the extracted concepts. Then, the following phase of template extraction is run. This phase is 
similar to the first one, but the concepts are considered. This way, the output is not made of 
simple templates, but of templates enhanced with semantic information.

4. Preliminary Evaluation

The results of our preliminary evaluation are included in table 1.

3  Examples taken from McTait [6].

(gave)[1,2]

(gave)(up)[1,2]



No Data Threshold Templates learned Comments
*useful **less 

useful
1 sentences: 56

words: 478
templates: 112

2 45 67 News items in English

2 sentences: 56
words: 478
templates: 40

3 21 19 News items in English
LOST 15 useful templates,
ADDED 1 new template 

(compared to experiment 1)
3 sentences: 56

words: 478
templates: 17

4 4 13 News items in English
LOST 3 useful templates 

compared to (2), 
LOST 16 useful templates 

compared to (2),
4 sentences: 162 

words: 2811
templates:123

2 64 59 News items in English

5 sentences: 162
words: 2409 
templates: 113

2 39 74 News items in Romanian

6 sentences: 214
words: 3667
templates: 68

2 31 37 News items in Romanian

Table 1. Preliminary evaluation  

We consider *useful to be contiguous or non-contiguous text fragments containing at 
least  one content  word and **less useful the extracted sentence fragments containing only 
functional words. The threshold is the minimum number of sentences the lexical item has to 
occur.  We  made  several  experiments  with  different  number  of  tokens,  and  came to  the 
conclusion that the maximum number of templates is learned when the threshold is 2. Another 
observation made is that for the same number of sentences in different languages, a different 
number of templates is learned.  Of course,  in some point  of our  experiments we have to 
calculate the precision and the recall. As we are at the beginning of our work, this is still not 
possible.

5. Further Work and Conclusions

The work is very much under development, so we are just in the first phase of the 
project.  Further  we intend to  improve the monolingual phase,  implement the bilingual and 
alignment phase of the template extraction mechanism. Then, as soon as this is done, after 
careful analysis of the extracted templates, we will create the necessary ontology. More tests 
have to be done, in order to be able to calculate the Precision and Recall.

In  this  paper  we  presented  a  new  methodology  for  TM  creation  enhanced  with 
semantic information. It  can be useful in automatic word sense disambiguation. It  prevents 



learning false templates, and tends to be language–neutral. In the end it will be integrated also 
in an EBMT system. 
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