
Some Remarks on Locality Conditions and
Minimalist Grammars∗

Hans-Martin Gärtner and Jens Michaelis

Introduction

In this paper we undertake a study of syntactic locality conditions (LCs)
within Stablerian minimalist grammars (MGs) (Stabler 1997, 1998, 1999 and
elsewhere). We show that the “restrictiveness” of LCs measured in terms of
weak generative capacity depends on how they are combined. Thus, standard
MGs incorporating just the shortest move condition (SMC) are mildly context-
sensitive. Adding the specifier island condition (SPIC) to such grammars either
reduces complexity or, interestingly, it increases complexity. This depends
on the co-presence or absence of the SMC, respectively. Likewise, the effect
of adding the adjunct island condition (AIC) to an extended MG is either
trivial (without co-presence of the SMC) or, apparently, crucial in preserving
mild context-sensitivity. The point of this exercise is to demonstrate that LCs
as such - intuitions to the contrary notwithstanding - are not automatically
restrictive where a formal notion of restrictiveness is applied. Independent
motivation for our work comes from a recent convergence of two research
trends. On the one hand, appeal has been made to the formal complexity of
natural languages in work on language evolution (Hauser et al. 2002, Piattelli-
Palmarini and Uriagereka 2004) and to computational efficiency in mainstream
minimalism (Chomsky 2005). On the other hand, the formally well-understood
Stablerian MGs provide enough descriptive flexibility to be taken seriously as
a syntactic theory by the working linguist. A more comprehensive study of
the complexity of constraint interaction is still outstanding.

∗For comments, criticisms and suggestions we are greatful to audiences at FG 2003 Vienna,
ZAS Berlin, Symposium “Recursion + Interfaces = Language?,” LACL 2005 Bordeaux,
FGMoL 2005 Edinburgh, INRIA/LaBRI Bordeaux, SfS Tübingen. Special thanks go to
an anonymous reviewer. Finally we would like to thank Tom Cornell, Ed Keenan, Greg Kobele,
Hap Kolb, Marcus Kracht, Uwe Mönnich, Christian Retoré, Jim Rogers, Ed Stabler, Peter
Staudacher, Wolfgang Sternefeld, Craig Thiersch for many hours of stimulating discussion.
The usual disclaimers apply.

161

162 Hans-Martin Gärtner and Jens Michaelis

1 Locality Conditions

Generative grammar took one of its more important turns when locality con-
ditions (LCs) were established in work by Ross (1967) and Chomsky (1973,
1977). As is well-known, this led to a period of intense research into the pro-
per formulation of LCs, as documented in work by Huang (1982), Chomsky
(1986), Rizzi (1990), Cinque (1990), Manzini (1992), Müller and Sternefeld
(1993), and Szabolcsi and Zwarts (1997), among others.

Formally LCs can be separated into two types, intervention-based LCs
(ILCs) and containment-based LCs (CLCs). ILCs are often characterized in
terms of minimality constraints, such as the minimal link, minimal chain,
shortest move, or attract closest condition. In the framework of minimalist
grammars (MGs) (Stabler 1997, 1999), which we are adopting in this paper,
intervention-based locality is captured by the shortest move condition (SMC).
CLCs are often characterized in terms of (generalized) grammatical functions.
Familiar conditions define adjunct islands, subject islands, and specifier islands.
MGs have integrated versions of a specifier island condition (SPIC) (Stabler
1999) and an adjunct island condition (AIC) (Frey and Gärtner 2002; Gärtner
and Michaelis 2003). In (1) we schematically illustrate the structure of these
LC-types.

(1) a. [. . . α . . . [. . . β . . . γ . . .]]

b. [. . . α . . . [β . . . γ . . .]]

An ILC, (1a), prevents establishing dependencies between constituents α

and γ across an intervening β. Intervention is typically defined in terms of
c-command or similar notions. A CLC, (1b), on the other hand, prevents estab-
lishing dependencies between constituents α and γ into or out of a containing
β. Containment is usually defined in terms of dominance.

It is also well-known that LCs have been central in the quest for achieving
the “Goals of Generative Linguistic Theory.” Thus, consider the following
statement by Chomsky (1973, p. 232):

From the point of view that I adopt here, the fundamental empiri-
cal problem of linguistics is to explain how a person can acquire
knowledge of language. [...] To approach the fundamental empir-
ical problem, we attempt to restrict the class of potential human
languages by setting various conditions on the form and function
of grammars.

Quite uncontroversially, LCs have been taken to serve as restrictions in this
sense. However, the important underlying notion of restrictiveness is much

Some Remarks on Locality Conditions and Minimalist Grammars 163

less easy to pin down in a principled manner. In particular, it is difficult to
answer the following two questions in any satisfactory way.

Q1: How do we know that we have restricted the class of potential human
languages?

Q2: Could we measure the degree of restriction, and if so, how?

Researchers are fundamentally divided over how to deal with these ques-
tions. Currently, at least two major approaches coexist. The first one, which
we will call “formalist,” is rooted in formal complexity theory as discussed in
Chomsky (1956, 1959). The alternative, which we call “cognitivist,” is built
on the prospects of establishing a theory of “relevant cognitive complexity.”
For this distinction we rely on Berwick and Weinberg (1982, p. 187), who em-
phasized that “[t]here is a distinction to be drawn between relevant cognitive
complexity and the mathematical complexity of a language.”

Interestingly, Chomsky (1977) may be understood as having sided with the
cognitivists, interpreting locality conditions as part of such a theory, as the
following quote indicates.1

Each of these conditions [subjacency, SSC, PIC] may be thought
of as a limitation on the scope of the processes of mental compu-
tation. (Chomsky 1977, p. 111)

Now, a standard criticism raised by formalists against cognitivists concerns
the inability of the latter of answering questions Q1 and Q2. In particular,
cognitivist notions of restrictiveness have been found inadequate for defining
classes of languages. Formalism, on the other hand, is typically criticized
especially for employing the measure of weak generative capacity, which, it is
felt, requires abstractions too far removed from the grammars found useful by
linguists.

However, recent developments, taking their outset from “The Minimalist
Program” (Chomsky 1995) have created a situation where formalism and
cognitivism have begun to converge on common interests again.

In particular, work on language evolution by, i.a., Hauser et al. (2002) and
Piattelli-Palmarini and Uriagereka (2004) has raised the interest of cognitivists
in formalist concerns.2

1SSC stands for the specified subject condition, and PIC stands for the propositional island
condition.

2According to Kolb (1997, p. 3) the same trend toward formalism characterizes Chomsky’s
minimalist revision of principles and parameters (PP) theory: “PP theory often gives the im-

164 Hans-Martin Gärtner and Jens Michaelis

At the same time, work on minimalist grammars (MGs), as defined by Sta-
bler (1997), has led to a realignment of “grammars found ‘useful’ by linguists”
and formal complexity theory. MGs are capable of integrating (if needed)
mechanisms such as: head movement (Stabler 1997, 2001), (strict) remnant
movement (Stabler 1997, 1999), affix hopping (Stabler 2001), adjunction and
scrambling (Frey and Gärtner 2002), and late adjunction and extraposition
(Gärtner and Michaelis 2003).

In addition to this descriptive flexibility, Michaelis (1998 [2001a]) has
shown MGs to provide a mildly context-sensitive grammar (MCSG) formalism
in the sense of Joshi (1985).3 This class of formalisms, which is shown in
Fig. 15 (Appendix C), has repeatedly been argued to be of exactly the right
kind when it comes to characterizing the complexity of human languages.
MCSGs combine conditions on weak generative capacity with the condition
of polynomial time parsability4 and the so-called constant growth property.
Constant growth informally means that “if the strings of a language are ar-
ranged in increasing order of length, then two consecutive lengths do not differ
in arbitrarily large amounts” (Joshi et al. 1991, p. 32).

Given the two properties just outlined, MGs are an ideal tool for studying
the complexity and/or restrictiveness of LCs. Such a study is what the remain-
der of this paper is devoted to. Concretely we are going to look at the behavior
and interaction of the SMC, the SPIC and the AIC. It will turn out that different
LCs have different effects on complexity. The original complexity result has
been shown to hold for standard MGs incorporating the SMC. Now, impor-
tantly, adding the SPIC to standard MGs has non-monotonic consequences in
the sense that whether complexity goes up or down depends on the absence or
(co-)presence of the SMC, respectively. Thus, if we interpret (and measure)
growing restrictiveness in terms of complexity reduction, we must conclude
that adding a constraint like the SPIC as such does not - intuitions to the
contrary notwithstanding - lead to more restrictive grammars automatically.

pression of a mere collection of ‘interesting’ facts which is largely data driven and where every
new phenomenon may lead to new (ad hoc) formal devices, often incompatible, and without a
measure to compare and/or decide between conflicting analyses meaningfully—in short: As a
formal system it looks largely incoherent. [...] In what amounts to just about a U-turn, [in] its
latest version, chapter 4 of Chomsky (1995) [...] [c]omplexity considerations are reintroduced
into theory formation, and the non-recursiveness assumption is (implicitly) retracted.” The
trend has gained full momentum in Chomsky’s more recent writings, where computational
efficiency is counted among the crucial (sub-)factors of language design (Chomsky 2005, p. 6).

3See also Michaelis (2001b, 2005) and references cited therein for further details.
4This is the dimension that underlies the formal study of island conditions in Berwick

(1992). For psycholinguistic studies, see Pritchett (1992) and Gibson (1991).

Some Remarks on Locality Conditions and Minimalist Grammars 165

For the AIC, the picture is slightly more complicated. First of all, the AIC
only makes sense if (base-)adjunction and adjunction by scrambling/extra-
position is added to MGs. Even more specifically, the AIC seems to make a
difference if adjunction is allowed to occur countercyclically or late, i.e. if
it is allowed to target a non-root constituent. Under these conditions, adding
the AIC together with the SMC guarantees that the resulting grammars stay
within the class of MCSGs. Without the AIC there are configurations that
appear to go beyond that boundary. In MGs without the SMC, on the other
hand, it is plausible to assume that the AIC does not change complexity at all,
i.e. it is void. Again we can conclude that the restrictiveness of a constraint is
not inherently given but depends on the structure it interacts with.

Before we can present these results, we give a brief introduction to standard
MGs and the relevant extensions. This will be done in Section 2. Section 3
contains our main results. Section 3.1 illustrates how an MG including the
SPIC but without the SMC goes beyond MCSGs. Section 3.2 shows a case
where an MG with the SMC but without the AIC appears to lose its status as
MCSG. Section 4 is devoted to conclusions and a further outlook. Appendix A
provides formal definitions and Appendix B sketches our approach to multiple
wh-movement. We show there how to remove a prima facie conflict between
this phenomenon and the SMC.

2 Minimalist Grammars

The objects specified by a minimalist grammar (MG) are so-called minimalist
expressions or minimalist trees, which straightforwardly translate into the
usual aboreal picture from syntactic theory as depicted in Fig. 1.5

A simple expression is given as a list of feature instances (technically: a
single-noded tree labeled by that list) to be checked from left to right, where the
intervening marker # is used to separate the checked part of feature instances
from the non-checked one. A minimalist tree is said to have, or likewise,
display feature f if its head-label is of the form α# f α′.

Starting from a finite set of simple expressions (the lexicon), minimalist
expressions can be built up recursively from others by applying structure build-
ing functions. The applications of these functions are triggered by particular
instances of syntactic features appearing in the trees to which the functions
are applied. After having applied a structure building function, the triggering

5Stabler’s minimalist expressions are closely related to but not to be confused with Chom-
skyan linguistic expressions, the latter defined as pairs, 〈π,λ〉, of PF- and LF-representations
(Chomsky 1995, p. 170).

166 Hans-Martin Gärtner and Jens Michaelis

<<< “left daughter projects”

>>> “right daughter projects”

>>>

specifier >>>

specifier >>>

specifier
<<<

head

complement

Figure 1. A typical minimalist expression

feature instances get marked as checked. Different structure building opera-
tions are triggered by different types of syntactic features. The standard ones
are given by the following list:

(basic) categories:

m(erge)-selectors:

m(ove)-licensees:

m(ove)-licensors:

x ,,, y ,,, z ,,, . . .

=x ,,, =y ,,, =z ,,, . . .

-x ,,, -y ,,, -z ,,, . . .

+x ,,, +y ,,, +z ,,, . . .

Instances of (basic) category features and m-selectors trigger the merge-
operator mapping a pair of trees to a single tree if the selecting tree φ displays
m-selector =x and the selected tree χ displays the corresponding category x. χ

is selected as a complement in case φ is simple, and as a specifier, otherwise.
In both cases, the triggering feature instances get marked as checked in the
resulting tree (see Fig. 2).

Instances of m-licensors and m-licensees trigger applications of the move-
operator by which—without imposing the shortest move condition (SMC)—a
single tree displaying m-licensor +x is mapped to a finite set of trees, consisting
of every tree which results from moving a maximal projection displaying the
corresponding m-licensee -x into a specifier position. Again the feature
instances triggering the application of the operator get marked as checked in
the resulting tree (see Fig. 3).

Some Remarks on Locality Conditions and Minimalist Grammars 167

merge : Trees×Trees−→ Trees

ααα#=xααα′′′

φφφ

βββ#xβββ′′′

χχχ

φφφ complexφφφ simple

<<<

ααα=x#ααα′′′

βββx#βββ′′′

χχχ′′′
>>>

βββx#βββ′′′

χχχ′′′

ααα=x#ααα′′′

φφφ′′′

Figure 2. The merge-operator.

move : Trees−→ 2Trees

ααα#+xααα′′′

βββ#-xβββ′′′

χχχ

φφφ

>>>

βββ-x#βββ′′′

χχχ′′′

ααα+x#ααα′′′

φφφ′′′

Figure 3. The move-operator.

168 Hans-Martin Gärtner and Jens Michaelis

The tree language of an MG is the set of trees of category c (the root
category “complete” or “complementizer”) each of which with essentially
no unchecked syntactic features left after having been derived from a finite
number of (possibly multiple) instances of lexical items by successively apply-
ing structure building operators. The string language of an MG is the set of
strings each of which resulting from concatenating “left-to-right” the terminal
leaf-labels of some tree belonging to the tree language.

Standard MGs usually come with a specific implementation of the shortest
move condition (SMC): for each MG there is an absolute (finite) upper bound
n on the number of competing, i.e. simultaneously displayed, licensee features
triggering an application of the move-operator. In the most radical version
we have n = 1. As shown in Fig. 4, in the standard case this excludes both
crossing and nesting dependencies involving multiple licensees of one and
the same type.6 Note also that, in this sense, absence of the SMC (– SMC,
for short) means that no absolute upper bound on simultaneously displayed
licensee features exists.

∗∗∗ ααα ∧∧∧ααα ∧∧∧

∗∗∗ ααα ∧∧∧ααα ∧∧∧

Figure 4. The shortest movement condition (SMC) (Stabler 1997, 1999)

The MG-variant proposed by Stabler (1999) also includes an implementa-
tion of the specifier island condition (SPIC) which essentially demands that
proper extraction from specifiers is blocked (see Fig. 5).

Structurally similar to the SPIC, MGs can be endowed with an implemen-
tation of the adjunct island condition (AIC) demanding that, if at all, only full
adjuncts but none of their proper subparts can extract (see Fig. 6).

Talk of adjuncts and the AIC presupposes extending MGs with additional
syntactic features and structure building functions. To the list of syntactic

6See Section 3.2 for an exploitation of the dynamic character of the SMC. See Michaelis
(2001b) and Stabler (1999) for the MG-treatment of cross-serial dependencies. See Appendix
B for our approach to multiple wh-dependencies.

Some Remarks on Locality Conditions and Minimalist Grammars 169

∧∧∧

∗∗∗

<<<

. . . #+x . . . >>>

specifier

. . . #-x . . .

Figure 5. The specifier island condition (SPIC) (Stabler 1999).

features we add:

. . .a(djoin)-selectors:

s(cramble)-licensees:

≈x ,,, ≈y ,,, ≈z ,,, . . .

∼x ,,, ∼y ,,, ∼z ,,, . . .

Then we introduce an adjoin-operator and extraposition/scramble-opera-
tor, which in contrast to the merge- and move-operator do not function as
a bilateral checking mechanism but a unilateral one. This implements type-
preservingness and iterability of adjunction, as is familiar from categorial
grammar.

∧∧∧

∗∗∗

<<<

>>>

adjunct

Figure 6. The adjunct island condition (AIC) (Frey and Gärtner 2002).

170 Hans-Martin Gärtner and Jens Michaelis

Instances of (basic) category features and a-selectors trigger the adjoin-
operator mapping a pair of trees, 〈φ,χ〉, to a finite set of trees, consisting of
every tree which results from adjoining the tree φ if it displays the a-selector
≈x to the tree χ: cyclically in case χ displays the corresponding category
x, or acyclically to a maximal projection ψ properly contained in χ in case
the head-label of ψ contains a checked instance of the category x. In both
cases, the a-selector feature instance triggering the application of the operator
gets marked as checked in the resulting tree, while the other head-label of χ,
respectively ψ, remains unchanged (cf. Fig. 7).

adjoin : Trees×Trees−→ 2Trees

cyclic adjunction (Frey and Gärtner 2002)

ααα#≈xααα′′′

φφφ

βββ#xβββ′′′

χχχ

<<<

βββ#xβββ′′′

χχχ

ααα≈x#ααα′′′

φφφ′′′

acyclic/late adjunction (Gärtner and Michaelis 2003)

ααα#≈xααα′′′

φφφ
χχχ

βββxβββ′′′#βββ′′′′′′
ψψψ

<<<

χχχ

βββxβββ′′′#βββ′′′′′′
ψψψ

ααα≈x#ααα′′′

φφφ′′′

Figure 7. The operator adjoin.

Some Remarks on Locality Conditions and Minimalist Grammars 171

Instances of (basic) categories and s-licensees trigger applications of the
scramble-operator which—without imposing the SMC—maps a single tree
displaying category x to a finite set of trees, consisting of every tree which
results from extraposing/scrambling a maximal projection displaying the
corresponding s-licensee ∼x into an adjoined position. Again, only the s-
licensee feature instance triggering the application of the operator gets marked
as checked in the resulting tree, while the corresponding head-label displaying
category x remains unchanged (cf. Fig. 8).

scramble : Trees−→ 2Trees

ααα#xααα′′′

βββ#∼xβββ′′′

χχχ

φφφ

<<<

βββ∼x#βββ′′′

χχχ′′′

ααα#xααα′′′

φφφ

Figure 8. The operator scramble.

3 Locality Conditions and Complexity Results

As indicated in Section 1, our complexity results concern the interaction of
locality constraints. In Section 3.1 we look at the interaction of the SPIC and
the SMC within standard MGs. In Section 3.2 we introduce MGs with late
adjunction and discuss the interaction of the AIC and the SMC within such
extended grammars. The MG-diamonds in Fig. 9 provide a systematic picture
for our study. The ultimate task is to establish complexity results for each
corner and to reflect on their relation.

172 Hans-Martin Gärtner and Jens Michaelis

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

MG+adjunction
+extraposition

– SMC , – AIC

+ SMC , – AIC – SMC , + AIC

+ SMC , + AIC

Figure 9. MG-diamonds — Towards complexity results concerning LCs

3.1 The Specifier Island Condition

Fig. 10 presents an example of a non-mildly context-sensitive MG not fulfilling
the SMC but the SPIC, and deriving a language without constant growth
property, namely, {a2n |n≥ 0} = {a,aa,aaaa,aaaaaaaa, . . .}. The central
column shows the lexical items as they are drawn from the lexicon, i.e., with
all features unchecked. Arrows show the possible orders of interaction among
lexical items and resulting constituents in terms of merge. Intermediate steps
of move are left implicit.

As shown by Kobele and Michaelis (2005), not only this language, but
in fact every language of type 0 can be derived by some MG not fulfilling
the SMC but the SPIC for essentially two reasons: a) because of the SPIC,

∧∧∧
<<<

>>>

ααα

βββ

<<<

complement line

movement of a constituent α into a specifier position freezes every proper
subconstituent β within α, and b) without the SMC, therefore, the complement

Some Remarks on Locality Conditions and Minimalist Grammars 173

line of a tree (in terms of the successively embedded complements) can
technically be employed as a queue. As is well-known, systems able to
simulate queues are able to generate arbitrary type 0-languages.

∧∧∧

licensee-m “marks”

end/start of “outer” cycle
“initialize”

∧∧∧

∧∧∧

#...v...-m

#...=v.z...-l

#.=z...+m.u

∧∧∧

end “outer” cycle “appropriately:”

check licensee-m

start new “outer” cycle:

introduce new licensee-m

∧∧∧

#.=u.+l.x...-m

#.=x.y.-l#.=x.y.-l

∧∧∧∧∧∧

“reintroduce” and “double”
the just checked licensee-l

∧∧∧

“inner” cycle

∧∧∧
∧∧∧

“outer” cycle

∧∧∧

#.=y.z.-l#.=y.z.-l

#.=z.+l.x
∧∧∧

#.=z.+m.c

#.=c.+l.c.a

∧∧∧

“finalize”

leave final cycle “appropriately:”

check licensee-m

check successively licensee-l,
each time introducing ana

Figure 10. MG-example — Complexity results concerning LCs

Starting the “outer” cycle of our example in Fig. 10, the currently derived
tree shows 2n+1 successively embedded complements on the complement
line, all with an unchecked instance of -l, except for the lowest one, which
displays -m. (n equals the number of cycles already completed.) The ini-
tializing selecting head #.=v.z.-l introduces an additional m-licensee -l to
create string a on a cycleless derivation. Going through the cycle provides a
successive bottom-to-top “roll-up” of those complements in order to check
the displayed features. Thereby, 2n+1+1 successively embedded complements
on the complement line are created, again all displaying feature -l except for
the lowest, which displays feature -m. Leaving the cycle procedure after a
cycle has been completed leads to a final checking of the displayed licensees,
where for each checked -l an a is introduced in the structure. This is the only
way to create a convergent derivation.7 Fig. 11 shows the result of a cycleless
derivation creating string a, and a one-cycle derivation creating string aa.

7For further details see Gärtner and Michaelis (2005).

174 Hans-Martin Gärtner and Jens Michaelis

>

<2

=v.z.-l.# ε1

<

=c.+l.#.c.a >

v.-m.#1 <

=z.+m.c.# ε2

>

<5

=y.z.-l.# ε4

<

=c.+l.#.c.a >

<4

=x.y.-l.# ε3

<

=c.+l.c.#.a >

>3

<2

=v.z.-l.# ε1

<

=u.+l.x.-m.# >

v.-m.#1 <

=z.+m.u.# ε2

<

=z.+m.c.# ε5

Figure 11. MG-example — Complexity results concerning LCs
(Numerical indices indicate antecedent-trace relations)

Some Remarks on Locality Conditions and Minimalist Grammars 175

Fig. 12 summarizes what we know about the interaction of SMC and SPIC,8

where L1 ↘ L2, respectively L2 ↙ L1, means “language class L2 is lower
in generative capacity than language class L1” while L1 ↗ L2, respectively
L2 ↖ L1, means “language class L2 is higher in generative capacity than
language class L1.” Crucially, adding the SPIC can either properly reduce
complexity (lower left side) or properly increase complexity (upper right side).
What the SPIC does depends on the presence or absence of SMC. Its behavior
is thus non-monotonic.

MG

– SMC , – SPIC

+ SMC , – SPIC – SMC , + SPIC

+ SMC , + SPIC

$ LCFRS(Michaelis 2005)

MIX language∈∈∈
?
⊆ constant growth

LCFRS

(Michaelis 2001a,c; Harkema 2001)

type 0

(Kobele and Michaelis 2005)

↓↓↓ ↓↓↓

↓↓↓ !!!↑↑↑

Figure 12. MG-diamond — Shortest move (SMC) and specifier islands (SPIC)

3.2 The Adjunct Island Condition

In this section we look at MGs with (late) adjunction and scrambling/extra-
position and study the effects of imposing the AIC in a situation where the
SMC alone appears to be too weak to guarantee mild context-sensitivity. As

8In Fig. 12 LCFRS stands for Linear Context-Free Rewriting System. For a more compre-
hensive picture of how these systems fit into the MCSG landscape see Appendix C. The MIX
language is the language of all finite strings consisting of an equal number of a’s, b’s, and c’s
appearing in arbitrary order.

176 Hans-Martin Gärtner and Jens Michaelis

in Section 3.1, the task is to fill in complexity relations between the corners of
our MG-diamond, shown with relevant changes made in Fig. 13.

Late or countercyclic adjunction has already been introduced in Section
2 (cf. Fig. 7). One of its main linguistic motivations, going back (at least) to
Lebeaux (1991), has to do with the possibility of avoiding standardly predicted
but unattested violations of binding principle C. This is done by adjoining a
constituent containing an R-expression after the constituent adjoined to has
moved out of the c-command domain of a potentially offensive binder for that
R-expression. (2) gives an example with a modifying relative clause.

(2) [DP [DP which book] j [CP that Maryi read]] did shei like t j

For the complexity issue we are interested in here it is important to note that,
as already briefly indicated by Gärtner and Michaelis (2003), late adjunction
is capable of circumventing the SMC. (3) presents a case where this is actually
welcome.

(3) [[[[Only those papers ti]k did [everyone t j] read tk] [who
was on the committee] j] [that deal with adjunction]i]

We assume for simplicity that both relative clauses in (3) are extraposed by
an application of rightward scrambling and are adjoined to CP. This is very
roughly sketched in (4).

∧∧∧ α∧∧∧ α
(4) ∗∗∗ [[[CP CP2 CP1]]]

This violates the SMC (see above) if α is instantiated as ∼c. However, as
sketched in (5), a derivational sequence of (first) extraposition, late adjunction
and (second) extraposition voids this problem.

(5) start here[[[CP CPα
1]]]

CP6α1 move CP1, check α[[[CP]]]

CP6α1 late adjoin CP2[[[CP CPα
2]]]

CP6α2CP6α1 move CP2, check α[[[CP]]]-

Some Remarks on Locality Conditions and Minimalist Grammars 177

MG
+adjunction
+extraposition

– SMC , – AIC

+ SMC , – AIC – SMC , + AIC

+ SMC , + AIC

MIX language∈∈∈
?
⊆ constant growth

MIX language∈∈∈

?⊆
constant growth

LCFRS

↓↓↓ ↓↓↓

↓↓↓ ↑↑↑ ↓↓↓

!

Figure 13. MG-diamond — Shortest Move (SMC) and Adjunct Islands (AIC)

The proof that MGs without late adjunction are mildly context-sensitive rests
on the technical possibility of removing checked features from the structures.9

Formally, late adjunction creates a situation where in order to locate the
individual adjunction sites, an a priori not bounded amount of (categorial)
information has to be stored during a derivation, i.e., adjunction sites have to

9See Stabler and Keenan (2003) for a reduced MG-format that cashes this out representa-
tionally. Chomsky (2005, p. 11) characterizes his “. . . ‘no-tampering’ condition of efficient
computation” in almost the same way. Speaking of “operations forming complex expressions”
Chomsky notes that it “sharply reduces computational load” if “what has once been constructed
can be ‘forgotten’ in later computations.” Without noting the tension created, Chomsky (2005,
p. 12) introduces the “internal Merge” implementation of movement. This operation in fact
requires an a priori not bounded amount of structure to remain available for copying and
displacement. This undoes the effect of whatever structure may be ‘forgotten’ otherwise.
Introducing the notion of “edge of a phase” (Chomsky 2001) as container for “still active”
constituents does not essentially improve the situation, as long as there is no upper bound on
the material inside such an edge. As far as we can see, this also negatively affects attempts by
Chesi (2004) at providing any “measurable” complexity reductions in terms of phase-based
locality. The point made by Berwick (1992) is closely related. Thus, “computational intractabil-
ity” results if syntactic traces or “variables” are allowed to preserve an arbitrary amount of
information (full copying being the extreme case).

178 Hans-Martin Gärtner and Jens Michaelis

be kept accessible. Therefore it is unclear whether, in general, MGs allowing
late adjunction still belong to the same complexity class. If, however, the
AIC is imposed, we can apply a specific reduction method in proving that
for the resulting MGs the old complexity result holds. Under this reduction,
however, late adjunction can only be simulated if the adjunct does not properly
contain constituents bearing unchecked m- or s-licensees. But, this is exactly
the situation where the AIC comes in. From a linguistic point of view it is
rather natural to exclude extraction from adjuncts as Huang (1982) argued.
This means that the weak generative capacity of MGs with late adjunction
and extraposition can be kept within the bounds of standard MGs, i.e. mild
context-sensitivity, if the AIC is imposed in addition to the SMC. Fig. 13
summarizes our results for SMC/AIC-interaction. Again, addition of an LC
does not automatically restrict the grammar, as the upper right side shows. We
conjecture that the AIC is a formal restriction only where it complements the
SMC.

4 Conclusion and Further Outlook

Let us take a step back and summarize what we have found out about LCs
within Stablerian MGs. Taking restrictiveness to be defined as weak generative
capacity, we have illustrated how imposition of an LC can have either:

(A) restrictive effects, or

(B) no restrictive effects, or

(C) anti-restrictive effects.

Thus, adding the SPIC to standard MGs raises them to type 0 grammars if
the SMC is absent, while together with the SMC it induces a genuine restriction
(Section 3.1). Adding the AIC to an MG extended with the operations of late
adjunction and extraposition (via rightward scrambling) is without effects
unless the SMC is co-present. In the latter case, the AIC guarantees mild
context-sensitivity, which the extended MGs without it are likely to go beyond
(Section 3.2). We think that these non-monotonic effects of LCs should
be of interest to everyone caring about formal (and measurable) notions of
restrictiveness. In a nutshell, the message is that “constraints do not always
constrain.” Our result for MGs without SMC, but obeying the SPIC can be
seen in the light of what Rogers (1998, p. 3f) concludes about a famous similar
case:

Some Remarks on Locality Conditions and Minimalist Grammars 179

The significance of the [Peters & Ritchie-]results is [...] that,
by itself, the hypothesis that natural languages are characterized
by Aspects-style TGs [...] has no non-trivial consequences with
respect to the class of natural languages.

Equally, by itself, the hypothesis that natural languages are characterized
by the said MGs has no non-trivial consequences with respect to the class of
natural languages.

As pointed out in Section 1, all of these issues have regained relevance due
to the recent emergence of “cognitivist” studies of language evolution (Hauser
et al. 2002, Piattelli-Palmarini and Uriagereka 2004) that reintroduce notions
of classical formal complexity theory. Likewise, Chomskyan minimalism
conceives of computational efficiency as contributing to the design factors
of language (Chomsky 2005). This comes at a time where more and more
grammar types have begun to converge on the mildly context-sensitive format
(Joshi et al. 1991), Stablerian MGs among them.

There are some obvious ways to pursue the work begun here further. First of
all, we have not looked at the interaction of SPIC and AIC. This is particularly
relevant for MGs with late adjunction and extraposition for the following
reasons. First, it is unclear whether the SPIC should constrain extraposition
as much as it would in our current formalization. Secondly, the dynamics
of late adjunction call for greater care to be taken in distinguishing static
from dynamic formulations of LCs, i.e. LCs that put absolute bans on output
structures vs. LCs that constrain individual derivational steps. On a more
speculative note, it also remains to be seen whether a different division of labor
between competence and performance aspects of grammars, as envisioned by
Sternefeld (1998), could reorganize the (complexity) landscape of grammar
formalisms in a fruitful fashion.

Appendix A

Throughout we let ¬Syn and Syn be a finite set of non-syntactic features and
a finite set of syntactic features, respectively, in accordance with (F1)–(F3)
below. We take Feat to be the set ¬Syn∪Syn.

(F1) ¬Syn is disjoint from Syn and partitioned into the sets Phon and Sem, a
set of phonetic features and a set semantic features, respectively.

(F2) Syn is partitioned into six sets:10

10Elements from Syn will usually be typeset in typewriter font.

180 Hans-Martin Gärtner and Jens Michaelis

Base
M-Select = { =x | x ∈ Base}
A-Select = {≈x | x ∈ Base}
M-Licensors = { +x | x ∈ Base}
M-Licensees = { -x | x ∈ Base}
S-Licensees = {∼x | x ∈ Base}

a set of (basic) categories
a set of m(erge)-selectors
a set of a(djoin)-selectors
a set of m(ove)-licensors
a set of m(ove)-licensees
a set of s(cramble)-licensees

(F3) Base includes at least the category c.

We use Licensees as a shorthand denoting the set M-Licensees∪S-Licensees.

Definition 4.1 An expression (over Feat), also referred to as a minimalist tree
(over Feat), is a 6-tuple 〈Nτ ,/

∗
τ ,≺τ ,<τ , labelτ〉 obeying (E1)–(E3).

(E1) 〈Nτ ,/
∗
τ ,≺τ〉 is a finite, binary (ordered) tree defined in the usual sense:

Nτ is the finite, non-empty set of nodes, and /
∗
τ and≺τ are the respective

binary relations of dominance and precedence on Nτ .11

(E2) <τ⊆ Nτ ×Nτ is the asymmetric relation of (immediate) projection that
holds for any two siblings, i.e., for each x ∈ Nτ different from the root
of 〈Nτ ,/

∗
τ ,≺τ〉 either x <τ siblingτ(x) or siblingτ(x) <τ x holds.12

(E3) labelτ is the leaf-labeling function from the set of leaves of 〈Nτ ,/
∗
τ ,≺τ〉

into Syn∗{#}Syn∗Phon∗Sem∗.13

We take Exp(Feat) to denote the class of all expressions over Feat.

Let τ = 〈Nτ ,/
∗
τ ,≺τ ,<τ , labelτ〉 ∈ Exp(Feat).14

11Thus, /∗τ is the reflexive-transitive closure of /τ ⊆ Nτ ×Nτ , the relation of immediate
dominance on Nτ .

12siblingτ(x) denotes the (unique) sibling of any given x ∈ Nτ different from the root of
〈Nτ ,/

∗
τ ,≺τ〉. If x <τ y for some x,y ∈ Nτ then x is said to (immediately) project over y.

13For each set M, M∗ is the Kleene closure of M, including ε, the empty string. For any two
sets of strings, M and N, MN is the product of M and N w.r.t. string concatenation. Further, #
denotes a new symbol not appearing in Feat.

14Note that the leaf-labeling function labelτ can easily be extended to a total labeling function
`τ from Nτ into Feat∗{#}Feat∗∪{< ,>}, where < and > are two new distinct symbols: to each
non-leaf x ∈ Nτ we can assign a label from {< ,>} by `τ such that `τ(x) = < iff y <τ z for
y,z ∈ Nτ with x /τ y,z, and y≺τ z. In this sense a concrete τ ∈ Exp(Feat) is depictable in the
way indicated in Fig. 1.

Some Remarks on Locality Conditions and Minimalist Grammars 181

For each x ∈ Nτ , the head of x (in τ), denoted by headτ(x), is the (unique)
leaf of τ with x /

∗
τ headτ(x) such that each y ∈ Nτ on the path from x to

headτ(x) with y 6= x projects over its sibling, i.e. y <τ siblingτ(y). The head
of τ is the head of τ’s root. τ is said to be a head (or simple) if Nτ consists of
exactly one node, otherwise τ is said to be a non-head (or complex).

An expression φ = 〈N
φ
,/
∗
φ
,≺

φ
,<

φ
, label

φ
〉 ∈Exp(Feat) is a subexpression

of τ in case 〈N
φ
,/
∗
φ
,≺

φ
〉 is a subtree of 〈Nτ ,/

∗
τ ,≺τ〉, <

φ
= <τ�N

φ
×N

φ
, and

label
φ

= labelτ�N
φ
. Such a subexpression φ is a maximal projection (in τ) if its

root is a node x ∈ Nτ such that x is the root of τ, or such that siblingτ(x) <τ x.
MaxProj(τ) is the set of maximal projections in τ.

compτ ⊆MaxProj(τ)×MaxProj(τ) is the binary relation defined such that
for all φ,χ ∈ MaxProj(τ) it holds that φcompτ χ iff headτ(rφ) <τ rχ, where
rφ and rχ are the roots of φ and χ, respectively. If φcompτ χ holds for some
φ,χ ∈MaxProj(τ) then χ is a complement of φ (in τ). comp+

τ is the transitive
closure of compτ . Comp+(τ) is the set {φ |τcomp+

τ φ}.
specτ ⊆MaxProj(τ)×MaxProj(τ) is the binary relation defined such that

for all φ,χ ∈MaxProj(τ) it holds that φspecτ χ iff both rχ = siblingτ(x) and
x <τ rχ for some x ∈ Nτ with rφ /

+
τ x /

+
τ headτ(rφ), where rφ and rχ are the

roots of φ and χ, respectively. If φspecτ χ for some φ,χ ∈MaxProj(τ) then χ

is a specifier of φ (in τ). Spec(τ) is the set {φ |τspecτ φ}.
A φ ∈MaxProj(τ) is said to have, or display, (open) feature f if the label

assigned to φ’s head by labelτ is of the form β# f β′ for some f ∈ Feat and
some β,β′ ∈ Feat∗.15

τ is complete if its head-label is in Syn∗{#}{c}Phon∗Sem∗, and each of its
other leaf-labels is in Syn∗{#}Phon∗Sem∗. Hence, a complete expression over
Feat is an expression that has category c, and this instance of c is the only
instance of a syntactic feature which is preceded by an instance of # within its
local leaf-label, i.e. the leaf-label it appears in.

The phonetic yield of τ, denoted by YPhon(τ), is the string which results
from concatenating in “left-to-right-manner” the labels assigned via labelτ to
the leaves of 〈Nτ ,/

∗
τ ,≺τ〉, and replacing all instances of non-phonetic features

with the empty string, afterwards.

For any φ,χ ∈ Exp(Feat), [<φ,χ] (respectively, [>φ,χ]) denotes the com-
plex expression ψ = 〈Nψ ,/

∗
ψ ,≺ψ ,<ψ , labelψ〉 ∈ Exp(Feat) for which φ and

15Thus, e.g., the expression depicted in (3) has feature +x, while there is a maximal projection
which has feature -x.

182 Hans-Martin Gärtner and Jens Michaelis

χ are those two subexpressions such that rψ /ψ rφ, rψ /ψ rχ and rφ ≺ψ rχ, and
such that rφ <ψ rχ (respectively rχ <ψ rφ), where r

φ
, rχ and rψ are the roots

of φ, χ and ψ, respectively.
For any φ,χ,ψ ∈ Exp(Feat) such that χ is a subexpression of φ, φ{χ/ψ} is

the expression which results from substituting ψ for χ in φ.

In the following we write MG as a shorthand for minimalist grammar.

Definition 4.2 An MG without both SMC and SPIC (MG///−−−,,,−−−///) is a 5-tuple of
the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of the
structure building functions merge///−−−/// and move///−−−,,,−−−/// defined as in (me-SPIC)
and (mo-SMC,-SPIC) below, respectively, and where Lex is a lexicon (over
Feat), a finite set of simple expressions over Feat, and each item τ ∈ Lex is
of the form 〈{rτ},/

∗
τ ,≺τ ,<τ , labelτ〉 such that labelτ(rτ) is an element in

{#}(M-Select∪M-Licensors)∗BaseM-Licensees∗Phon∗Sem∗.

The operators from Ω build larger structure from given expressions by succe-
sively checking “from left to right” the instances of syntactic features appear-
ing within the leaf-labels of the expressions involved. The symbol # serves to
mark which feature instances have already been checked by the application of
some structure building operation.

(me-SPIC) merge///−−−/// is a partial mapping from Exp(Feat)×Exp(Feat) into
Exp(Feat). For any φ,χ ∈ Exp(Feat), 〈φ,χ〉 is in Dom(merge///−−−///) if for
some category x ∈ Base and α,α′,β,β′ ∈ Feat∗, conditions (me.i) and
(me.ii) are fulfilled:16

(me.i) the head-label of φ is α#=xα′ (i.e. φ has m-selector =x), and
(me.ii) the head-label of χ is β#xβ′ (i.e. χ has category x).

Then,

(me.1) merge///−−−///(φ,χ) = [<φ′,χ′] if φ is simple, and

(me.2) merge///−−−///(φ,χ) = [>χ′,φ′] if φ is complex,

where φ′ and χ′ result from φ and χ, respectively, just by interchanging
the instance of # and the instance of the feature directly following the
instance of # within the respective head-label (cf. Fig. 2).

16For a partial function f from a class A into a class B, Dom(f) is the domain of f , i.e., the
class of all x ∈ A for which f (x) is defined.

Some Remarks on Locality Conditions and Minimalist Grammars 183

(mo-SMC,-SPIC) move///−−−,,,−−−/// is a partial mapping from Exp(Feat) into the class
Pfin(Exp(Feat)).17 A φ ∈ Exp(Feat) is in Dom(move///−−−,,,−−−///) if for some
-x ∈M-Licensees and α,α′ ∈ Feat∗, (mo.i) and (mo.ii) are true:

(mo.i) the head-label of φ is α#+xα′ (i.e. φ has licensor +x),

(mo.ii) there exists a χ ∈ MaxProj(φ) with head-label β#-xβ′ for some
β,β′ ∈ Feat∗ (i.e. χ ∈MaxProj(φ) exists displaying feature -x).

Then,

move///−−−,,,−−−///(φ) =
{

[>χ′,φ′]
∣∣∣∣ χ∈MaxProj(φ) with head-label β#-xβ′

for some β,β′ ∈ Feat∗

}
,

where φ′ results from φ by interchanging the instance of # and the
instance of +x directly following it within the head-label of φ, while the
subtree χ is replaced by a single node labeled ε. χ′ arises from χ by
interchanging the instance of # and the instance of -x immediately to
its right within the head-label of χ (cf. Fig. 3).

Definition 4.3 An MG without SMC, but with SPIC (MG///−−−,,,+++///) is a five-tuple
of the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of the
structure building functions merge///+++/// and move///−−−,,,+++/// defined as in (me+SPIC)
and (mo-SMC,+SPIC) below, respectively, and where Lex is a lexicon over Feat
defined as in Definition 4.2.

(me+SPIC) merge///+++/// is a partial mapping from Exp(Feat)×Exp(Feat) into
Exp(Feat). For any φ,χ ∈ Exp(Feat), 〈φ,χ〉 is in Dom(merge///+++///) if for
some category x ∈ Base and α,α′,β,β′ ∈ Feat∗, conditions (me.i) and
(me.ii) above and (me.spic) are fulfilled:

(me.spic) if φ is complex then there is no ψ ∈MaxProj(χ) with head-
label γ#yγ′ for some y ∈ Licensees and γ,γ′ ∈ Feat∗ (i.e. the se-
lected specifier does not properly contain a maximal projection
with an unchecked syntactic feature instance).

Then, merge///+++///(φ,χ) = merge///−−−///(φ,χ).

17Pfin(Exp(Feat)) is the class of all finite subsets of Exp(Feat).

184 Hans-Martin Gärtner and Jens Michaelis

(mo-SMC,+SPIC) move///−−−,,,+++/// is a partial mapping from Exp(Feat) into the class
Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(move///−−−,,,+++///) if for some
-x ∈M-Licensees and α,α′ ∈ Feat∗, (mo.i) and (mo.ii) given above and
(mo.spic) are true:

(mo.spic) there is no ψ ∈MaxProj(χ) different from χ, and with head-
label γ#yγ′ for some y ∈ Licensees and γ,γ′ ∈ Feat∗ (i.e. the max-
imal projection moved to the specifier does not itself properly
contain itself a maximal projection displaying an unchecked syn-
tactic feature instance).

Then, move///−−−,,,+++///(φ) = move///−−−,,,−−−///(φ).

The formulation of the SPIC as presented here, could be seen as an “active”
variant, preventing the creation of expressions which include specifiers from
which proper extraction could potentially take place. The MG-version pre-
sented in Stabler 1999 allows derivation of such expressions, but prevents these
expressions to enter a convergent derivation by explicity stating a “passive” for-
mulation of the SPIC, demanding that the maximal projection χ ∈MaxProj(φ)
which has feature -x can only move in order to check the licensee, if there
exists a ψ ∈ Comp+(φ) with χ = ψ or χ ∈ Spec(ψ).

Definition 4.4 An MG with SMC, but without SPIC (MG///+++,,,−−−///) is a five-tuple
of the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of the
structure building functions merge///−−−/// and move///+++,,,−−−/// defined as in (me-SPIC)
above and (mo+SMC,-SPIC) below, respectively, and where Lex is a lexicon over
Feat defined as in Definition 4.2.

(mo+SMC,-SPIC) move///+++,,,−−−/// is a partial mapping from Exp(Feat) into the class
Pfin(Exp(Feat)). A φ ∈ Exp(Feat) belongs to Dom(move///+++,,,−−−///) if for
some -x∈M-Licensees and α,α′ ∈ Feat∗, (mo.i) and (mo.ii) above and
(mo.smc) are true:

(mo.smc) exactly one χ ∈ MaxProj(φ) exists with head-label γ#-xγ′

for some γ,γ′ ∈ Feat∗ (i.e. exactly one χ ∈MaxProj(φ) has -x).18

Then, move///+++,,,−−−///(φ) = move///−−−,,,−−−///(φ).

18Note that condition (mo.smc) implies (mo.ii).

Some Remarks on Locality Conditions and Minimalist Grammars 185

Definition 4.5 An MG with both SMC and SPIC (MG///+++,,,+++///) is a five-tuple of
the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of the
structure building functions merge///+++/// and move/+,+/ defined as in (me+SPIC)
above and (mo+SMC,+SPIC) below, respectively, and where Lex is a lexicon over
Feat defined as in Definition 4.2.

(mo+SMC,+SPIC) move/+,+/ is a partial mapping from Exp(Feat) into the class
Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(move/+,+/) if for some
-x ∈ M-Licensees and α,α′ ∈ Feat∗, (mo.i), (mo.ii), (mo.spic) and
(mo.smc) above are true. Then, move/+,+/(φ) = move///−−−,,,−−−///(φ).19

Let G = 〈¬Syn,Syn,Lex,Ω,c〉 be an MG///−−−,,,−−−///, MG///−−−,,,+++///, MG///+++,,,−−−///, respec-
tively MG///+++,,,+++///. For the sake of convenience, we refer to the corresponding
merge- and move-operator in Ω by merge and move, respectively. Then the
closure of G, CL(G), is the set

S
k∈IN CLk(G), where CL0(G) = Lex, and for

k ∈ IN,20 CLk+1(G)⊆ Exp(Feat) is recursively defined as the set

CLk(G) ∪ {merge(φ,χ) | 〈φ,χ〉 ∈ Dom(merge)∩CLk(G)×CLk(G)}

∪
[

φ∈Dom(move)∩CLk(G)
move(φ).

The set {τ |τ∈CL(G) and τ complete}, denoted by T (G), is the minimalist
tree language derivable by G. The set {YPhon(τ) |τ ∈ T (G)}, denoted by L(G),
is the minimalist (string) language derivable by G.

In the following we will use the notation MGadj,ext as a shorthand for minimalist
grammar with generalized adjunction and extraposition.

Definition 4.6 An MGadj,ext without both SMC and AIC (MG///−−−,,,−−−///

adj,ext) is a 5-
tuple G = 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of
the functions merge///−−−///, move///−−−,,,−−−///, adjoin///−−−/// and scramble///−−−,,,−−−/// defined as
in (me-SPIC) and (mo-SMC,-SPIC) above, and (ad-AIC) and (sc-SMC,-AIC) be-
low, respectively, and where Lex is a lexicon (over Feat), i.e., a finite set
of simple expressions over Feat, and each lexical item τ ∈ Lex is of the
form 〈{rτ},/

∗
τ ,≺τ ,<τ , labelτ〉 such that labelτ(rτ) is an element belonging

to {#}(M-Select∪M-Licensors)∗(Base∪A-Select)Licensees∗Phon∗Sem∗.

19Note that the the sets move///+++,,,−−−///(φ) and move/+,+/(φ) in (mo+SMC,-SPIC) and (mo+SMC,+SPIC),
respectively, both are singleton sets because of (SMC). Thus, these functions can easily be
identified with one from Exp(Feat) to Exp(Feat).

20IN is the set of all non-negative integers.

186 Hans-Martin Gärtner and Jens Michaelis

(ad-AIC) adjoin///−−−/// is a partial mapping from Exp(Feat)×Exp(Feat) into the
class Pfin(Exp(Feat)). A pair 〈φ,χ〉 with φ,χ ∈ Exp(Feat) belongs
to Dom(adjoin///−−−///) if for some category x ∈ Base and α,α′ ∈ Feat∗,
conditions (ad.i) and (ad.ii) are fulfilled:

(ad.i) the head-label of φ is α#≈xα′ (i.e. φ has a-selector ≈x), and

(ad.ii) there exists some ψ ∈MaxProj(φ) with head-label of the form
β#xβ′ or βxβ′#β′′ for some β,β′,β′′ ∈ Feat∗

Then,

adjoin///−−−///(φ,χ) =

χ{ψ/[<ψ,φ′]}

∣∣∣∣∣∣
ψ ∈ MaxProj(χ) with head-la-
bel β#xβ′ or βxβ′#β′′ for some
β,β′,β′′ ∈ Feat∗

 ,

where φ′ results from φ by interchanging the instances of # and ≈x, the
latter directly following the former in the head-label of φ (cf. Fig. 7).

(sc-SMC,-AIC) The function scramble///−−−,,,−−−/// maps partially from Exp(Feat) into
the class Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(scramble///−−−,,,−−−///)
if for some x ∈ Base and α,α′ ∈ Feat∗, (sc.i) and (sc.ii) are true:

(sc.i) the head-label of φ is α#xα′ (i.e. φ has category x), and

(sc.ii) there is some χ ∈MaxProj(φ) with head-label β#∼xβ′ for some
β,β′ ∈ Feat∗ (i.e. there is some χ ∈MaxProj(φ) displaying ∼x).

Then,

scramble///−−−,,,−−−///(φ) =
{

[>χ′,φ′]
∣∣∣∣ χ ∈ MaxProj(φ) with head-label

β#∼xβ′ for some β,β′ ∈ Feat∗

}
,

where φ′ ∈ Exp(Feat) is identical to φ except for the fact that the subtree
χ is replaced by a single node labeled ε. χ′ ∈ Exp(Feat) arises from χ

by interchanging the instance of # and the instance of ∼x immediately
to its right within the head-label of χ (cf. Fig. 8).

Some Remarks on Locality Conditions and Minimalist Grammars 187

Definition 4.7 An MGadj,ext without SMC, but with AIC (MG///−−−,,,+++///

adj,ext) is a five-
tuple of the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consist-
ing of the structure building functions merge///−−−///, move///−−−,,,−−−///, adjoin///+++/// and
scramble///−−−,,,+++/// defined as in (me-SPIC) and (mo-SMC,-SPIC) above, and (ad+AIC)
and (sc-SMC,+AIC) below, respectively, and where Lex is a lexicon over Feat
defined as in Definition 4.6.

(ad+AIC) adjoin///+++/// is a partial mapping from Exp(Feat)× Exp(Feat) into
the class Pfin(Exp(Feat)). A pair 〈φ,χ〉 with φ,χ ∈ Exp(Feat) belongs
to Dom(adjoin///+++///) if for some category x ∈ Base and α,α′ ∈ Feat∗,
conditions (ad.i) and (ad.ii) above and (ad.aic) are fulfilled:

(ad.aic) there is no ψ ∈ MaxProj(φ) with head-label γ#yγ′ for some
y ∈ Licensees and γ,γ′ ∈ Feat∗ (i.e. the adjunct does not properly
contain a maximal projection with an unchecked syntactic feature
instance).

Then, adjoin///+++///(φ,χ) = adjoin///−−−///(φ,χ).

(sc-SMC,+AIC) The function scramble///−−−,,,+++/// maps partially from Exp(Feat) into
the class Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(scramble///−−−,,,+++///)
if for some x ∈ Base and α,α′ ∈ Feat∗, (sc.i) and (sc.ii) above and
(sc.aic) are true:

(sc.aic) there is no ψ ∈ MaxProj(χ) different from χ, and with head-
label γ#yγ′ for some y ∈ Licensees and γ,γ′ ∈ Feat∗ (i.e. the maxi-
mal projection scrambled/extraposed to an adjunct position does
not itself properly contain itself a maximal projection displaying
an unchecked syntactic feature instance).

Then, scramble///−−−,,,+++///(φ) = scramble///−−−,,,−−−///(φ).

Definition 4.8 An MGadj,ext with SMC, but without AIC (MG///+++,,,−−−///

adj,ext) is a five-
tuple of the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consist-
ing of the structure building functions merge///−−−///, move///+++,,,−−−///, adjoin///−−−/// and
scramble///+++,,,−−−/// defined as in (me-SPIC), (mo+SMC,-SPIC) and (ad-AIC) above and
(sc+SMC,-AIC) below, respectively, and where Lex is a lexicon over Feat defined
as in Definition 4.6.

188 Hans-Martin Gärtner and Jens Michaelis

(sc+SMC,-AIC) The function scramble///+++,,,−−−/// maps partially from Exp(Feat) into
the class Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(scramble///+++,,,−−−///)
if for some x ∈ Base and α,α′ ∈ Feat∗, (sc.i) and (sc.ii) above and
(sc.smc) are true:

(sc.smc) exactly one χ ∈MaxProj(φ) exists with head-label γ#∼xγ′ for
some γ,γ′ ∈ Feat∗ (i.e. exactly one χ ∈MaxProj(φ) has ∼x).21

Then, scramble///+++,,,−−−///(φ) = scramble///−−−,,,−−−///(φ).

Definition 4.9 An MGadj,ext with both SMC and AIC (MG///+++,,,+++///

adj,ext) is a five-tuple
of the form 〈¬Syn,Syn,Lex,Ω,c〉 where Ω is the operator set consisting of the
structure building functions merge///−−−///, move///+++,,,−−−///, adjoin///+++/// and scramble/+,+/

defined as in (me-SPIC), (mo+SMC,-SPIC) and (ad+AIC) above and (sc+SMC,+AIC)
below, respectively, and where Lex is a lexicon over Feat defined as in Defini-
tion 4.6.

(sc+SMC,+AIC) scramble/+,+/ is a partial mapping from Exp(Feat) into the class
Pfin(Exp(Feat)). A φ ∈ Exp(Feat) is in Dom(scramble/+,+/) if for some
x ∈ Base and α,α′ ∈ Feat∗, (sc.i), (sc.ii), (sc.aic) and (sc.smc) above
are true. Then, scramble/+,+/(φ) = scramble///−−−,,,−−−///(φ).

Consider an MG///−−−,,,−−−///

adj,ext, MG///−−−,,,+++///

adj,ext, MG///+++,,,−−−///

adj,ext, respectively MG///+++,,,+++///

adj,ext, G, of the
form 〈¬Syn,Syn,Lex,Ω,c〉. For the sake of convenience, we refer to the
corresponding merge-, move-, adjoin- and scramble-operator in Ω by merge,
move, adjoin and scramble, respectively. The closure of G, CL(G), is the setS

k∈IN CLk(G), where CL0(G) = Lex, and for k ∈ IN, CLk+1(G)⊆ Exp(Feat)
is recursively defined as the set

CLk(G) ∪ {merge(φ,χ) | 〈φ,χ〉 ∈ Dom(merge)∩CLk(G)×CLk(G)}

∪
[

φ∈Dom(move)∩CLk(G)
move(φ)

∪
[
〈φ,χ〉∈Dom(adjoin)∩CLk(G)×CLk(G)

adjoin(φ,χ)

∪
[

φ∈Dom(scramble)∩CLk(G)
scramble(φ)

The set {τ |τ∈CL(G) and τ complete}, denoted by T (G), is the minimalist
tree language derivable by G. The set {YPhon(τ) |τ ∈ T (G)}, denoted by L(G),
is the minimalist (string) language derivable by G.

21Note that condition (sc.smc) implies (sc.ii).

Some Remarks on Locality Conditions and Minimalist Grammars 189

Appendix B

One phenomenon that appears to challenge the SMC adopted here is multiple
wh-fronting in Slavic languages. Take (6) from Bulgarian (Richards 2001, p.
249).

(6) Koji kogo j kakvok ti e pital t j tk
Who whom what AUX ask
‘Who asked whom what?’

On standard assumptions, (6) requires three m-licensee instances of type
-wh, which are successively checked in the C-domain. The required pre-
movement representation, (7), is ruled out by the strictest version of the SMC
(see above).

(7) [IP -wh.koj e [VP pital -wh.kogo -wh.kakvo]]

However, an SMC-violation can be circumvented if we adopt the wh-
cluster hypothesis by Sabel (1998; 2001) and Grewendorf (2001). Under
this perspective, wh-expressions undergo successive cluster-formation before
the resulting cluster takes a single wh-movement step, in compliance with
the SMC. For this we have to add the feature type of c(luster)-licensees and
-licensors to MGs.

c(luster)-licensees:

c(luster)-licensors:

Mx ,,, My ,,, Mz ,,, . . .
Ox ,,, Oy ,,, Oz ,,, . . .

In Fig. 14 we show a derivation with two wh-phrases. For cases with three
or more such phrases the intermediate ones have to be of type d.Owh.Mwh.
Note that additional word order variation can be found in Bulgarian, as shown
in (8) (Richards 2001, p. 249).

(8) Koj kakvo kogo e pital

This can be derived if cluster-formation is preceded by a scrambling-step of
kakvo across kogo to VP, which requires it to be of type d.∼v.Owh. See Sabel
(1998) for more discussion of wh- and focus-driven movements in multiple
wh-configurations. Semantically, wh-cluster-formation can be interpreted as
quantifier composition, a.k.a. “absorption” (Higginbotham and May 1981).

190 Hans-Martin Gärtner and Jens Michaelis

<<<

#...+wh...c
>>>

d...#...
▽wh...-wh

d.#.
△wh

<<<

#...+wh...c
>>>

<<<

d...▽wh...#...-wh d.△wh...#

Wh-clustering, n === 2, crucial step 1

>>>

<<<

d.▽wh.-wh.# d.△wh...# <<<

+wh...#...c
>>>

εεε

<<<

#...+wh...c
>>>

<<<

d.▽wh.#.-wh d.△wh...#

Wh-clustering, n === 2, crucial step 2

Figure 14. Wh-clustering involving c-licensors and c-licensees.

Appendix C

A general picture of the MCSG landscape is given in the next figure, where,
in particular, we have the following abbreviations: TAG = tree adjoining
grammars, LIG = linear indexed grammars, CCG = combinatory categorial
grammars, HG = head grammars, LCFRS = linear context-free rewriting
systems, MCTAG = (set local) multi-component tree adjoining grammars, IG
= indexed grammars.

An arrow always points to a class which is less powerful in generative
capacity. If there is a double-arrow between two classes their generative
capacity is equal.

Some Remarks on Locality Conditions and Minimalist Grammars 191

MCSG

LFG

IG

CCG

LIG

∧∧∧

∧∧∧

∧∧∧

∧∧∧

HG

TAG∧∧∧

∧∧∧

∧∧∧

∧∧∧

∧∧∧

∧∧∧

∧∧∧

MCTAG

LCFRS
∧∧∧

∧∧∧

∧∧∧

MG(+SMC,-SPIC)

∧∧∧

MG(+SMC,+SPIC)

∧∧∧

CFG (GPSG)

Figure 15. MCSG landscape

192 Hans-Martin Gärtner and Jens Michaelis

References

Berwick, Robert
1992 No variable is an island. Computational complexity and island con-

straints. In Goodluck and Rochemont (1992), pp. 35–59.
Berwick, Robert and Amy Weinberg

1982 Parsing efficiency, computational complexity, and the evaluation of
grammatical theories. Linguistic Inquiry, 13: 165–191.

Chesi, Christiano
2004 Complexity and Determinism in Linguistic Computation. Manuscript,

University of Siena, Siena.
Chomsky, Noam

1956 Three models for the description of language. In IRE Transactions on
Information Theory, volume IT-2(3), pp. 113–124.

1959 On certain formal properties of grammars. Information and Control,
2: 137–167.

1973 Conditions on transformations. In S. Anderson and P. Kiparsky, (eds.),
A Festschrift for Morris Halle, pp. 232–286. Holt, Rinehart and Win-
ston, New York, NY.

1977 On wh-movement. In P. Culicover, T. Wasow, and A. Akmajian, (eds.),
Formal Syntax, pp. 71–132. Academic Press, New York, NY.

1986 Barriers. MIT Press, Cambridge, MA.
1995 The Minimalist Program. MIT Press, Cambridge, MA.
2001 Derivation by phase. In Michael Kenstowicz, (ed.), Ken Hale. A Life

in Language, pp. 1–52. MIT Press, Cambridge, MA.
2005 Three factors in language design. Linguistic Inquiry, 36: 1–22.

Cinque, Guglielmo
1990 Types of A’-Dependencies. MIT Press, Cambridge, MA.

de Groote, Philippe, Glyn Morrill, and Christian Retoré, (eds.)
2001 Logical Aspects of Computational Linguistics (LACL ’01), Lecture

Notes in Artificial Intelligence Vol. 2099. Springer, Berlin, Heidelberg.
Frey, Werner and Hans-Martin Gärtner

2002 On the treatment of scrambling and adjunction in minimalist grammars.
In Proceedings of the Conference on Formal Grammar (FGTrento),
Trento, pp. 41–52.

Gärtner, Hans-Martin and Jens Michaelis
2003 A note on countercyclicity and minimalist grammars. In Proceedings

of the Conference on Formal Grammar (FGVienna), Vienna, pp. 103–
114.

2005 A note on the complexity of constraint interaction. Locality conditions
and minimalist grammars. In P. Blache, E. Stabler, J. Busquets, and
R. Moot, (eds.), Logical Aspects of Computational Linguistics (LACL

’05), Lecture Notes in Artificial Intelligence Vol. 3492, pp. 114–130.
Springer, Berlin, Heidelberg.

Some Remarks on Locality Conditions and Minimalist Grammars 193

Gibson, Edward
1991 Linguistic complexity. Locality of syntactic dependencies. Cognition,

68: 1–76.
Goodluck, Helen and Michael Rochemont, (eds.)

1992 Island Constraints. Theory, Acquisition and Processing. Kluwer, Dor-
drecht.

Grewendorf, Günther
2001 Multiple wh-fronting. Linguistic Inquiry, 32: 87–122.

Harkema, Henk
2001 A characterization of minimalist languages. In de Groote et al. (2001),

pp. 193–211.
Hauser, Marc, Noam Chomsky, and Tecumseh Fitch

2002 The faculty of language. What is it, who has it, and how did it evolve?
Science, 298: 1569–1579.

Higginbotham, James and Robert May
1981 Questions, quantifiers, and crossing. The Linguistic Review, 1: 41–79.

Huang, James C.-T.
1982 Logical Relations in Chinese and the Theory of Grammar. Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, MA.
Joshi, Aravind K.

1985 Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? In D. R. Dowty, L.
Karttunen, and A. M. Zwicky, (eds.), Natural Language Parsing.
Psychological, Computational, and Theoretical Perspectives, pp. 206–
250. Cambridge University Press, New York, NY.

Joshi, Aravind K. K. Vijay-Shanker, and David J. Weir
1991 The convergence of mildly context-sensitive grammar formalisms. In

P. Sells, S. M. Shieber, and T. Wasow, (eds.), Foundational Issues
in Natural Language Processing, pp. 31–81. MIT Press, Cambridge,
MA.

Kobele, Gregory M. and Jens Michaelis
2005 Two type-0 variants of minimalist grammars. In FG-MoL 2005. The

10th conference on Formal Grammar and The 9th Meeting on Mathe-
matics of Language, Edinburgh.

Kolb, Hans-Peter
1997 GB Blues. Two Essays on Procedures and Structures in Generative

Syntax. Bericht Nr. 110, Arbeitspapiere des SFB 340, Universität
Tübingen.

Lebeaux, David
1991 Relative clauses, licensing, and the nature of the derivation. In Su-

san D. Rothstein, (ed.), Perspectives on Phrase Structure. Heads and
Licensing, pp. 209–239. Academic Press, New York, NY.

Manzini, Rita
1992 Locality. MIT Press, Cambridge, MA.

194 Hans-Martin Gärtner and Jens Michaelis

Michaelis, Jens
1998 Derivational minimalism is mildly context-sensitive. In Proceedings

of the Conference on Logical Aspects of Computational Linguistics
(LACL ’98), Grenoble, pp. 61–64.

2001a Derivational minimalism is mildly context-sensitive. In M. Moortgat,
(ed.), Logical Aspects of Computational Linguistics (LACL ’98), Lec-
ture Notes in Artificial Intelligence Vol. 2014, pp. 179–198. Springer,
Berlin, Heidelberg.

2001b On Formal Properties of Minimalist Grammars. Linguistics in Pots-
dam 13. Universitätsbibliothek, Publikationsstelle, Potsdam.

2001c Transforming linear context-free rewriting systems into minimalist
grammars. In de Groote et al. (2001), pp. 228–244.

2005 An additional observation on strict derivational minimalism. In FG-
MoL 2005. The 10th conference on Formal Grammar and The 9th
Meeting on Mathematics of Language, Edinburgh.

Müller, Gereon and Wolfgang Sternefeld
1993 Improper movement and unambiguous binding. Linguistic Inquiry, 24:

461–507.
Piattelli-Palmarini, Massimo and Juan Uriagereka

2004 Immune syntax. The evolution of the language virus. In Lyle Jenkins,
(ed.), Variation and Universals in Biolinguistics, pp. 341–377. Elsevier,
Oxford.

Pritchett, Bradley
1992 Parsing with grammar. Islands, heads, and garden paths. In Goodluck

and Rochemont (1992), pp. 321–349.
Richards, Norvin

2001 Movement in Language. Interactions and Architectures. Oxford Uni-
versity Press, Oxford.

Rizzi, Luigi
1990 Relativized Minimality. MIT Press, Cambridge, MA.

Rogers, James
1998 A Descriptive Approach to Language-Theoretic Complexity. Studies in

Logic, Language and Information. CSLI Publications, Stanford, CA.
Ross, John R.

1967 Constraints on Variables in Syntax. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA.

Sabel, Joachim
1998 Principles and Parameters of Wh-Movement. Habilitationsschrift,

Universität Frankfurt.
2001 Deriving multiple head and phrasal movement. The cluster hypothesis.

Linguistic Inquiry, 32: 532–547.
Stabler, Edward P.

1997 Derivational minimalism. In C. Retoré, (ed.), Logical Aspects of
Computational Linguistics (LACL ’96), Lecture Notes in Artificial
Intelligence Vol. 1328, pp. 68–95. Springer, Berlin, Heidelberg.

Some Remarks on Locality Conditions and Minimalist Grammars 195

1998 Acquiring languages with movement. Syntax, 1: 72–97.
1999 Remnant movement and complexity. In G. Bouma, G.-J. M. Kruijff, E.

Hinrichs, and R. T. Oehrle, (eds.), Constraints and Resources in Natu-
ral Language Syntax and Semantics, pp. 299–326. CSLI Publications,
Stanford, CA.

2001 Recognizing head movement. In de Groote et al. (2001), pp. 245–260.
Stabler, Edward P. and Edward L. Keenan

2003 Structural similarity within and among languages. Theoretical Com-
puter Science, 293: 345–363.

Sternefeld, Wolfgang
1998 Grammatikalität und Sprachvermögen. SfS-Report-02-98, Seminar

für Sprachwissenschaft, Universität Tübingen.
Szabolcsi, Anna and Frans Zwarts

1997 Weak islands and an algebraic semantics for scope taking. In Anna Sz-
abolcsi, (ed.), Ways of Scope Taking, pp. 217–262. Kluwer, Dordrecht.

